scholarly journals Anti-Symmetric Mode Vibration of Electrostatically Actuated Clamped–Clamped Microbeams for Mass Sensing

Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 12 ◽  
Author(s):  
Lei Li ◽  
Yin-ping Zhang ◽  
Chi-cheng Ma ◽  
Can-chang Liu ◽  
Bo Peng

This paper details study of the anti-symmetric response to the symmetrical electrostatic excitation of a Micro-electro-mechanical-systems (MEMS) resonant mass sensor. Under higher order mode excitation, two nonlinear coupled flexural modes to describe MEMS mass sensors are obtained by using Hamilton’s principle and Galerkin method. Static analysis is introduced to investigate the effect of added mass on the natural frequency of the resonant sensor. Then, the perturbation method is applied to determine the response and stability of the system for small amplitude vibration. Through bifurcation analysis, the physical conditions of the anti-symmetric mode vibration are obtained. The corresponding stability analysis is carried out. Results show that the added mass can change the bifurcation behaviors of the anti-symmetric mode and affect the voltage and frequency of the bifurcation jump point. Typically, we propose a mass parameter identification method based on the dynamic jump motion of the anti-symmetric mode. Numerical studies are introduced to verify the validity of mass detection method. Finally, the influence of physical parameters on the sensitivity of mass sensor is analyzed. It is found that the DC voltage and mass adsorption position are critical to the sensitivity of the sensor. The results of this paper can be potentially useful in nonlinear mass sensors.

Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Muhammad Umair Nathani ◽  
Haleh Nazemi ◽  
Calvin Love ◽  
Yameema Babu Lopez ◽  
Siddharth Swaminathan ◽  
...  

Advancements in microfabrication technologies and novel materials have led to new innovations in miniaturized gas sensors that can identify miniscule changes in a complex environment. Micromachined resonators with the capability to offer high sensitivity and selectivity in array integration make mass loading a potential mechanism for electronic nose applications. This paper investigates the mass sensing characteristics of progressive capacitive based micromachined resonators as potential candidates for volatile organic compound detection where also there is a need for miniaturized array configuration. In this paper, a detailed investigative review of the major three geometric designs of capacitive based micromachined resonators, namely, the microcantilever, the microbridge and the clamped membrane sensors is performed. Although many reviews are present in literature regarding mass sensors, however there is a gap in the literature regarding the common capacitive based micromachined mass sensors. This research gives a review on the foundation for capacitive based micromachined mass sensors while highlighting the potential capabilities of each geometric design to be developed further. Moreover, this paper also introduces the advancements based on the geometric designs of the capacitive based micromachined mass sensors. An in-depth analysis is done for each geometric design, to identify the critical design parameters, which affect the sensors’ performances. Furthermore, the theoretically achievable mass sensitivity for each capacitive based micromachined mass sensor is modeled and analyzed using finite element analysis with mass variation in the picogram range. Finally, a critical analysis is done on the sensor sensitivities and further discussed in detail wherein each design is compared to each other and its current advances. Additionally, an insight to the advantages and disadvantages associated with each simulated geometry and its different advances are given. The results of the investigative review and analysis indicate that the sensitivities of the capacitive based micromachined sensors are dependent not only on the material composition of the devices but also on the varying degrees of clamping between the sensor geometries. In essence, the paper provides future research the groundwork to choose proper candidate geometry for a capacitive based micromachined mass sensor, with its several advantages over other mass sensors, based on the needed application.


Author(s):  
Dumitru I. Caruntu ◽  
Jose C. Solis Silva

The nonlinear response of an electrostatically actuated cantilever beam microresonator sensor for mass detection is investigated. The excitation is near the natural frequency. A first order fringe correction of the electrostatic force, viscous damping, and Casimir effect are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for uniform microresonators with mass deposition and without are reported.


2016 ◽  
Vol 24 (24) ◽  
pp. 5794-5810 ◽  
Author(s):  
Kemal Mazanoglu ◽  
Elif C Kandemir-Mazanoglu

This paper is on the natural frequency and mode shape computation of frame structures with column cracks. First, a model of intact frame structures is built to perform vibration analysis. Beam elements are considered as lumped masses and rotational springs at the storey levels of frames. Equivalent model of columns and lumped mass-stiffness effects of beams have been combined to carry out continuous solution for the anti-symmetric mode in-plane vibrations of frames. In addition, frame systems with multiple column cracks are analyzed in terms of anti-symmetric mode vibration characteristics. Cracks are considered as massless rotational springs in compliance with the local flexibility model. Compatibility and continuity conditions are satisfied at crack and storey locations of the equivalent column, modeled using the Euler–Bernoulli beam theory. The proposed method is tested for single-storey single- and multi-bay, H-type and double-storey single-bay frame systems with intact and cracked columns. Results are validated by those given in the current literature and/or obtained by the finite element analyses.


Author(s):  
Timothy Moulton ◽  
G. K. Ananthasuresh

Abstract There exists a need to stabilize the electrostatic actuation commonly used in Micro-Electro-Mechanical Systems (MEMS). Most electrostatically actuated MEMS devices act as variable capacitors with varying gap between the charged conductors. Electrostatic force in these devices is a nonlinear attractive force between the conductors resulting in a complex dynamic system. These systems are stable for only a small portion of the initial gap. In this paper a design method is presented for electrostatic micro-mirrors with improved stability. Controllable, stable electrostatic actuation can be achieved through surface contact between the two conductors. Once in contact with the surface, the compliance of the structure is used to stabilize the electrostatic actuation over a long range of motion. Beam based variable angle mirrors were designed and fabricated using the Multi-User MEMS Process at MCNC technology center. The design methods for stable electrostatic actuation were tested on these mirrors. Some characteristics are noted and their implementation into future designs is discussed.


2019 ◽  
Vol 11 (10) ◽  
pp. 1950098
Author(s):  
Mohammad Fathalilou ◽  
Pegah Rezaei-Abajelou ◽  
Afsoon Vefaghi ◽  
Ghader Rezazadeh

Due to the interesting properties such as light weight and high deformation ability, dielectric elastomer (DE) resonators can be good alternatives for conventional silicon resonant beams used in micro-electro-mechanical systems (MEMS). This paper proposes a modeling in which a pre-stretched clamped-clamped DE-based microbeam oscillating above the ground substrate is subjected to an external electrostatic pressure. Using a DE-based beam affects the total rigidity of the system, which may lead to an anticipated saddle-node or pitchfork bifurcation. Hence, the present study tries to analyze the effects of DE properties on changing the stability regime of DE-based microbeams under electrostatic actuation. The stability of the system has been investigated using an eigen-value form of the problem. The effects of DE properties including pre-stress, relative permittivity and voltage value across the electrodes on pull-in or divergence instability as well as the frequency response of the system have been investigated. Moreover, the critical values of the DE voltage as a booster of instability occurrence have been obtained in either the presence or absence of the direct current (DC) voltage. It has been found that the pre-stress and appropriate DE permittivity can provide a needed magnitude of the DE actuating voltage to alter the resonance frequency and stability positions of the structure.


Author(s):  
Parviz Ghadimi ◽  
Sasan Tavakoli ◽  
Abbas Dashtimanesh ◽  
Pouria Taghikhani

In this article, a mathematical model is presented for simulation of the coupled roll and heave motions of the asymmetric impact of a two-dimensional wedge body. This model is developed based on the added mass theory and momentum variation. To this end, new formulations are introduced which are related to the added mass caused by heave and roll motions of the wedge. These relations are developed by including the asymmetrical effects and roll speed. In addition, by considering the roll speed, a particular method is presented for the time derivative of half-wetted beam of an asymmetric wedge. Furthermore, two equations are derived for the roll and heave motions in which damping terms appear. Validity of the proposed method is verified by comparing the predicted results against available experimental data in two conditions of roll motion and no roll motion. Favorable agreement is observed between the predicted results and experimental data. The pressure and hydrodynamic load are computed, and the differences between the results associated with the considered conditions are explored. Subsequently, the effects of different physical parameters including deadrise angle, initial roll angle, and initial velocity on the dynamic response of a two-dimensional wedge section are investigated. Ultimately, time histories of hydrodynamic coefficients are determined in order to provide a better understanding of the derived equations.


Author(s):  
Dumitru I. Caruntu ◽  
Martin W. Knecht

This paper deals with electrostatically actuated resonator micro- and nano-sensor for mass detection for applications in medicine and biology. Nonlinear parametric resonance of the sensor when the electrostatic actuation frequency is near natural frequency of the system is investigated. Mass deposition is included and its effect on the nonlinear behavior of the resonator is predicted.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Michael Raulli ◽  
Kurt Maute

The increased use of micro-electro-mechanical systems (MEMS) as key components for actuation and sensing purposes in novel devices and systems emphasizes the need for optimal design methods. Stochastic variations in manufacturing and operational conditions must be considered in order to meet performance goals. This study proposes a reliability based design optimization methodology for the design of geometrically complex electrostatically actuated MEMS. The first order reliability method is used for reliability analysis of fully-coupled electrostatic-mechanical problems. A general methodology for predicting the instability phenomenon of pull-in and incorporating it into an automatic optimization process is proposed and verified with analytical and experimental results. The potential of this methodology is illustrated with the design of an analog micromirror.


Sign in / Sign up

Export Citation Format

Share Document