scholarly journals Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors

Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 519
Author(s):  
Abhinay Sandupatla ◽  
Subramaniam Arulkumaran ◽  
Ng Geok Ing ◽  
Shugo Nitta ◽  
John Kennedy ◽  
...  

Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of GaN as an α-particle detector. Work in developing GaN-based radiation sensors are still evolving and GaN sensors have successfully detected α-particles, neutrons, ultraviolet rays, x-rays, electrons and γ-rays. This review elaborates on the design of a good radiation detector along with the state-of-the-art α-particle detectors using GaN. Successful improvement in the growth of GaN drift layers (DL) with 2 order of magnitude lower in charge carrier density (CCD) (7.6 × 1014/cm3) on low threading dislocation density (3.1 × 106/cm2) hydride vapor phase epitaxy (HVPE) grown free-standing GaN substrate, which helped ~3 orders of magnitude lower reverse leakage current (IR) with 3-times increase of reverse breakdown voltages. The highest reverse breakdown voltage of −2400 V was also realized from Schottky barrier diodes (SBDs) on a free-standing GaN substrate with 30 μm DL. The formation of thick depletion width (DW) with low CCD resulted in improving high-energy (5.48 MeV) α-particle detection with the charge collection efficiency (CCE) of 62% even at lower bias voltages (−20 V). The detectors also detected 5.48 MeV α-particle with CCE of 100% from SBDs with 30-μm DL at −750 V.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5107 ◽  
Author(s):  
Sandupatla ◽  
Arulkumaran ◽  
Ranjan ◽  
Ing ◽  
Murmu ◽  
...  

A low voltage (–20 V) operating high-energy (5.48 MeV) α-particle detector with a high charge collection efficiency (CCE) of approximately 65% was observed from the compensated (7.7 × 1014 /cm3) metalorganic vapor phase epitaxy (MOVPE) grown 15 µm thick drift layer gallium nitride (GaN) Schottky diodes on free-standing n+-GaN substrate. The observed CCE was 30% higher than the bulk GaN (400 µm)-based Schottky barrier diodes (SBD) at –20 V. This is the first report of α–particle detection at 5.48 MeV with a high CCE at –20 V operation. In addition, the detectors also exhibited a three-times smaller variation in CCE (0.12 %/V) with a change in bias conditions from –120 V to –20 V. The dramatic reduction in CCE variation with voltage and improved CCE was a result of the reduced charge carrier density (CCD) due to the compensation by Mg in the grown drift layer (DL), which resulted in the increased depletion width (DW) of the fabricated GaN SBDs. The SBDs also reached a CCE of approximately 96.7% at –300 V.


2001 ◽  
Vol 680 ◽  
Author(s):  
U. Karrer ◽  
C.R. Miskys ◽  
O. Ambacher ◽  
M. Stutzmann

ABSTRACTThick GaN films, grown by hydride vapor phase epitaxy (HVPE), were separated from their sapphire substrate with a laser-induced lift-off process. After cleaning and polishing, these films offer the most direct way to investigate and compare the influence of crystal polarity on the electronic properties of Ga-face and N-face surfaces, respectively. Different barrier heights for Pt Schottky diodes evaporated onto Ga- and N-face GaN are determined from the dependence of the effective barrier height versus ideality factor by I-V measurements to 1.15 eV and 0.80 eV, respectively. The charge neutrality condition at the surface is modified by the spontaneous polarization due to the polarization induced bound sheet charge. This effect has to be included in the electronegativity concept of metal induced gap states (MIGS) and can also be illustrated by different band bending of the conduction and valence band, inferred from the self-consistent solution of the Schrödinger-Poisson equation. Furthermore, temperature dependent I-V characteristics are compared to simulated behavior of Schottky diodes, exhibiting excellent agreement in forward direction, but showing deviations in the reverse current.


2003 ◽  
Vol 792 ◽  
Author(s):  
A. Castaldini ◽  
A. Cavallini ◽  
L. Rigutti ◽  
F. Nava ◽  
P.G. Fuochi ◽  
...  

ABSTRACTThe effects of electron irradiation on the defects associated electronic levels in Schottky diodes on 4H silicon carbide epilayers grown by chemical vapour deposition were investigated by Deep Level Transient Spectroscopy (DLTS) and Capacitance-Voltage (C-V) characteristics. These investigations were performed before and after irradiation with 8.6 MeV electrons at different doses. After irradiation four new traps with enthalpies equal to (Ec-0.23 eV), (Ec-0.39 eV), (Ec-0.63 eV) and (Ec-0.75 eV) were detected. Their thermal stability, a key point to determine their structure on the basis of recent theoretical and experimental results, was carefully investigated since it was earlier observed that during DLTS temperature runs up to 500 K a slight but significant recovery of a few irradiation-induced levels occurs. This effect was previously observed in literature for the level (Ec-0.70 eV) after thermal treatment at 500 °C [1], but the present results indicate that it involves more than a single level and is also effective at lower temperature. DLTS analyses were also performed from room temperature to liquid nitrogen temperature and vice versa up to 500 K.The annealing kinetics is reported and a few conclusions on the structure of the defects involved in the recovery are drawn. The correlation with the diode charge collection efficiency is also reported.


1997 ◽  
Vol 487 ◽  
Author(s):  
P. G. Pelfer ◽  
F. Dubecký ◽  
R. Fomari ◽  
M. Pikna ◽  
M. Krempaský ◽  
...  

AbstractA study of electrical properties and detection performances of the semi-insulating (SI) InP based detectors is presented. Detectors with a top P+ layer and a Schottky back contact give the charge collection efficiency about 90 % and an energy resolution 3.7% (FWHM) for 5.48MeV α-particles at 250 K. Detection of X-rays (122 keV and 60 keV) photons in temperature region 220–250 K is demonstrated. Multiple peaking observed during detection of photons is discussed.


2005 ◽  
Vol 483-485 ◽  
pp. 1015-1020 ◽  
Author(s):  
Giuseppe Bertuccio ◽  
Simona Binetti ◽  
S. Caccia ◽  
R. Casiraghi ◽  
Antonio Castaldini ◽  
...  

High performance SiC detectors for ionising radiation have been designed, manufactured and tested. Schottky junctions on low-doped epitaxial 4H-SiC with leakage current densities of few pA/cm2 at room temperature has been realised at this purpose. The epitaxial layer has been characterised at different dose of radiations in order to investigate the SiC radiation hardness. The response of the detectors to alpha and beta particle and to soft X-ray have been measured. High energy resolution and full charge collection efficiency have been successfully demonstrated.


1990 ◽  
Vol 192 ◽  
Author(s):  
N. Wyrsch ◽  
P. Roca i Cabarrocas ◽  
S. Wagner ◽  
V. Viret

ABSTRACTThe effect of the depletion region in amorphous silicon Schottky diodes on the mobility-deep trapping lifetime product μτ of electrons has been investigated using transient photoconductivity techniques. We varied the laser wavelength of the exciting laser in time-of-flight (TOF) measurements. The results are correlated with measurements of the internal field by means of the charge collection efficiency, and with measurement of the deep-trapping time by the Delayed-Field TOF technique (DFTOF). We find that the electron μτ decreases from the bulk toward the top surface.


2019 ◽  
Vol 29 (2) ◽  
pp. 124-128 ◽  
Author(s):  
Yuyi Feng ◽  
Paul Kim ◽  
Clayton A. Nemitz ◽  
Kwang-Dae Kim ◽  
Yoonseok Park ◽  
...  

2021 ◽  
pp. 43-50
Author(s):  
A.I. Kondrik

The work is dedicated to studying by computer modeling the mechanisms of the influence of radiation defects, originating under high energy proton irradiation, on the resistivity ρ, lifetime of nonequilibrium electrons n and holes p in CdTe:Cl and Cd0.9Zn0.1Te, and charge collection efficiency η of room temperature ionizing radiation detectors based on these materials. The effect of recombination at deep levels of radiation defects on the degradation of n, p, and  of detectors based on CdTe:Cl and Cd0.9Zn0.1Te was studied. Energy levels of radiation defects also substantially effect on compensation degree of semiconductor decreasing ρ. The main factors affecting the abrupt or gradual decrease in the resistivity and charge collection efficiency of these detectors during their bombardment by high-energy protons, leading to complete degradation of their recording ability, were found. The important role of purity and deep donor concentration in initial state of the detector material was indicated.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250001 ◽  
Author(s):  
SERGE LURYI ◽  
ARSEN SUBASHIEV

High radiative efficiency in moderately doped n- InP results in the transport of holes dominated by photon-assisted hopping, when radiative hole recombination at one spot produces a photon, whose interband absorption generates another hole, possibly far away. Due to "heavy tails" in the hop probability, this is a random walk with divergent diffusivity (process known as the Lévy flight). Our key evidence is derived from the ratio of transmitted and reflected luminescence spectra, measured in samples of different thicknesses. These experiments prove the non-exponential decay of the hole concentration from the initial photo-excitation spot. The power-law decay, characteristic of Lévy flights, is steep enough at short distances (steeper than an exponent) to fit the data for thin samples and slow enough at large distances to account for thick samples. The high radiative efficiency makes possible a semiconductor scintillator with efficient photon collection. It is rather unusual that the material is "opaque" at wavelengths of its own scintillation. Nevertheless, after repeated recycling most photons find their way to one of two photodiodes integrated on both sides of the semiconductor slab. We present an analytical model of photon collection in two-sided slab, which shows that the heavy tails of Lévy-flight transport lead to a high charge collection efficiency and hence high energy resolution. Finally, we discuss a possibility to increase the slab thickness while still quantifying the deposited energy and the interaction position within the slab. The idea is to use a layered semiconductor with photon-assisted collection of holes in narrow-bandgap layers spaced by distances far exceeding diffusion length. Holes collected in these radiative layers emit longwave radiation, to which the entire structure is transparent. Nearly-ideal calculated characteristics of a mm-thick layered scintillator can be scaled up to several centimeters.


Sign in / Sign up

Export Citation Format

Share Document