scholarly journals Acoustic Microfluidic Separation Techniques and Bioapplications: A Review

Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 921
Author(s):  
Yuan Gao ◽  
Mengren Wu ◽  
Yang Lin ◽  
Jie Xu

Microfluidic separation technology has garnered significant attention over the past decade where particles are being separated at a micro/nanoscale in a rapid, low-cost, and simple manner. Amongst a myriad of separation technologies that have emerged thus far, acoustic microfluidic separation techniques are extremely apt to applications involving biological samples attributed to various advantages, including high controllability, biocompatibility, and non-invasive, label-free features. With that being said, downsides such as low throughput and dependence on external equipment still impede successful commercialization from laboratory-based prototypes. Here, we present a comprehensive review of recent advances in acoustic microfluidic separation techniques, along with exemplary applications. Specifically, an inclusive overview of fundamental theory and background is presented, then two sets of mechanisms underlying acoustic separation, bulk acoustic wave and surface acoustic wave, are introduced and discussed. Upon these summaries, we present a variety of applications based on acoustic separation. The primary focus is given to those associated with biological samples such as blood cells, cancer cells, proteins, bacteria, viruses, and DNA/RNA. Finally, we highlight the benefits and challenges behind burgeoning developments in the field and discuss the future perspectives and an outlook towards robust, integrated, and commercialized devices based on acoustic microfluidic separation.

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Minu Prabhachandran Nair ◽  
Adrian J. T. Teo ◽  
King Ho Holden Li

Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave method is best suited for handling biological samples due to biocompatibility, label-free and non-invasive properties. In this review paper, we present a study on the use of acoustic waves generated by piezoelectric materials in the area of label-free biosensors and microfluidic actuation towards the realization of LOC and POC devices. The categorization of acoustic wave technology into the bulk acoustic wave and surface acoustic wave has been considered with the inclusion of biological sample sensing and manipulation applications. This paper presents an approach with a comprehensive study on the fundamental operating principles of acoustic waves in biosensing and microfluidic actuation, acoustic wave modes suitable for sensing and actuation, piezoelectric materials used for acoustic wave generation, fabrication methods, and challenges in the use of acoustic wave modes in biosensing. Recent developments in the past decade, in various sensing potentialities of acoustic waves in a myriad of applications, including sensing of proteins, disease biomarkers, DNA, pathogenic microorganisms, acoustofluidic manipulation, and the sorting of biological samples such as cells, have been given primary focus. An insight into the future perspectives of real-time, label-free, and portable LOC devices utilizing acoustic waves is also presented. The developments in the field of thin-film piezoelectric materials, with the possibility of integrating sensing and actuation on a single platform utilizing the reversible property of smart piezoelectric materials, provide a step forward in the realization of monolithic integrated LOC and POC devices. Finally, the present paper highlights the key benefits and challenges in terms of commercialization, in the field of acoustic wave-based biosensors and actuation platforms.


Author(s):  
Anis Nurashikin Nordin

Today’s high-tech consumer market demand complex, portable personal wireless consumer devices that are low-cost and have small sizes. Creative methods of combining mature integrated circuit (IC) fabrication techniques with innovative radio-frequency micro-electro-mechanical systems (RF-MEMS) devices has given birth to wireless transceiver components, which operate at higher frequencies but are manufactured at the low-cost of standard ICs. Oscillators, RF bandpass filters, and low noise amplifiers are the most critical and important modules of any wireless transceiver. Their individual characteristics determine the overall performance of a transceiver. This chapter illustrates RF-oscillators that utilize MEMS devices such as resonators, varactors, and inductors for frequency generation. Emphasis will be given on state of the art RF-MEMS components such as film bulk acoustic wave, surface acoustic wave, flexural mode resonators, lateral and vertical varactors, and solenoid and planar inductors. The advantages and disadvantages of each device structure are described, with reference to the most recent work published in the field.


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 145
Author(s):  
Juliana Chawich ◽  
Walid M. Hassen ◽  
Céline Elie-Caille ◽  
Thérèse Leblois ◽  
Jan J. Dubowski

A regenerable bulk acoustic wave (BAW) biosensor is developed for the rapid, label-free and selective detection of Escherichia coli in liquid media. The geometry of the biosensor consists of a GaAs membrane coated with a thin film of piezoelectric ZnO on its top surface. A pair of electrodes deposited on the ZnO film allows the generation of BAWs by lateral field excitation. The back surface of the membrane is functionalized with alkanethiol self-assembled monolayers and antibodies against E. coli. The antibody immobilization was investigated as a function of the concentration of antibody suspensions, their pH and incubation time, designed to optimize the immunocapture of bacteria. The performance of the biosensor was evaluated by detection tests in different environments for bacterial suspensions ranging between 103 and 108 CFU/mL. A linear dependence between the frequency response and the logarithm of E. coli concentration was observed for suspensions ranging between 103 and 107 CFU/mL, with the limit of detection of the biosensor estimated at 103 CFU/mL. The 5-fold regeneration and excellent selectivity towards E. coli detected at 104 CFU/mL in a suspension tinted with Bacillus subtilis at 106 CFU/mL illustrate the biosensor potential for the attractive operation in complex biological media.


2018 ◽  
Vol 64 (9) ◽  
pp. 861-868 ◽  
Author(s):  
Katiuska I. Romero ◽  
Roberto Fernandez-Maestre

SUMMARY Ion mobility spectrometry (IMS) is a fast, low cost, portable, and sensitive technique that separates ions in a drift tube under the influence of an electric field according to their size and shape. IMS represents a non-invasive and reliable instrumental alternative for the diagnosis of different diseases through the analysis of volatile metabolites in biological samples. IMS has applications in medicine in the study of volatile compounds for the non-invasive diagnose of bronchial carcinoma, chronic obstructive pulmonary disease, and other diseases analysing breath, urine, blood, faeces, and other biological samples. This technique has been used to study complex mixtures such as proteomes, metabolomes, complete organisms like bacteria and viruses, monitor anaesthetic agents, determine drugs, pharmaceuticals, and volatile compounds in human body fluids, and others. Pharmaceutical applications include analysis of over-the-counter-drugs, quality assessment, and cleaning verification. Medical practice needs non-invasive, robust, secure, fast, real-time, and low-cost methods with high sensitivity and compact size instruments to diagnose different diseases and IMS is the diagnostic tool that meets all these requirements of the Medicine of the future.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 630 ◽  
Author(s):  
Yan Liu ◽  
Yao Cai ◽  
Yi Zhang ◽  
Alexander Tovstopyat ◽  
Sheng Liu ◽  
...  

With the rapid commercialization of fifth generation (5G) technology in the world, the market demand for radio frequency (RF) filters continues to grow. Acoustic wave technology has been attracting great attention as one of the effective solutions for achieving high-performance RF filter operations while offering low cost and small device size. Compared with surface acoustic wave (SAW) resonators, bulk acoustic wave (BAW) resonators have more potential in fabricating high- quality RF filters because of their lower insertion loss and better selectivity in the middle and high frequency bands above 2.5 GHz. Here, we provide a comprehensive review about BAW resonator researches, including materials, structure designs, and characteristics. The basic principles and details of recently proposed BAW resonators are carefully investigated. The materials of poly-crystalline aluminum nitride (AlN), single crystal AlN, doped AlN, and electrode are also analyzed and compared. Common approaches to enhance the performance of BAW resonators, suppression of spurious mode, low temperature sensitivity, and tuning ability are introduced with discussions and suggestions for further improvement. Finally, by looking into the challenges of high frequency, wide bandwidth, miniaturization, and high power level, we provide clues to specific materials, structure designs, and RF integration technologies for BAW resonators.


Sign in / Sign up

Export Citation Format

Share Document