scholarly journals Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 385 ◽  
Author(s):  
Sammer-ul Hassan ◽  
Xunli Zhang

Miniaturized quantitative assays offer multiplexing capability in a microfluidic device for high-throughput applications such as antimicrobial resistance (AMR) studies. The detection of these multiple microchannels in a single microfluidic device becomes crucial for point-of-care (POC) testing and clinical diagnostics. This paper showcases an optical flow cell for detection of parallel microchannels in a microfluidic chip. The flow cell operates by measuring the light intensity from the microchannels based on Beer-Lambert law in a linearly moving chip. While this platform could be tailored for a wide variety of applications, here we show the design, fabrication and working principle of the device. β-lactamase, an indicator of bacterial resistance to β-lactam antibiotics, especially in milk, is shown as an example. The flow cell has a small footprint and uses low-powered, low-cost components, which makes it ideally suited for use in portable devices that require multiple sample detection in a single chip.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3985
Author(s):  
Nan Wan ◽  
Yu Jiang ◽  
Jiamei Huang ◽  
Rania Oueslati ◽  
Shigetoshi Eda ◽  
...  

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ota Samek ◽  
Silvie Bernatová ◽  
Fadi Dohnal

Abstract The ability to identify and characterize microorganisms from tiny sample volumes in a rapid and reliable way is the first and crucial step in the diagnostics of microbial infections. Ideal analytical techniques would require minimal and low-cost sample preparation, permit automatic analysis of many serial samples, and allow rapid classification of present microorganisms against a stable database. Current practice, however, is far from this ideal; a typical analytical procedure might require a few days. Delayed laboratory results might lead, for example, to progress/spread of the infection, more serious condition of the patient, even death, prescription of inappropriate antibiotics that could be ineffective against causative agents and may as well contribute to the emerging problem of drug resistance in microorganisms. Several studies confirmed that surface enhanced Raman scattering (SERS) is capable of a rapid identification and discrimination of biological samples including medically relevant bacteria. A typical spectrum contains a wealth of information indicative of the cellular content of nucleic acids, purine bases, proteins, carbohydrates, and lipids. Such a spectrum functions as a cellular ‘fingerprint’ and serves as a sensitive indicator of the physiological state of the cell which in turn enables to differentiate cell types, actual physiological states, nutrient conditions, and phenotype changes. Consequently, the focus of this review is on the SERS spectra of bacteria which result from secreted metabolic substances – the purine bases – which are a common feature in the label-free SERS research related to clinical diagnostics of pathogens. Here is the review of the current status of SERS applications on bacteria. A special attention is given to the efforts of profiling antimicrobial susceptibility at clinically relevant species, which in turn has a great potential for use in routine point-of-care (POC) tests. Thus, early and accurate infection disease management can be provided at the bedside or at remote care centres.


2017 ◽  
Vol 5 (1) ◽  
pp. 26
Author(s):  
Afnidar Afnidar ◽  
Bambang Kuswandi

Abstract This paper presents a low-cost and disposable paper based microfluidic analysis system for point-of-care diagnostics. Detection is achieved by using a colorimetric or visual indicator. Immobilized specific reagent or enzymes designed for the parameter under consideration act as capture molecules on the surface of the detection zone. The sensor is integrated into a microfluidic system made of paper (cellulose). An additional component of the analysis system is a capillary unit which is used to introduce the analyte to the detection zone. For this purpose well- defined, millimeter-sized channel, comprising hydrophobic polymer bounded onto hydrophilic paper was created. Then the detection zone was coated with a sensitive reagent layer as a sensor region. The paper based microfluidics also called lab on paper, has been fabricated using screen printing technology as the basis for low-cost, disposable, portable and technically simple fabrication for mass production. Microfluidics in paper make it feasible to run single, dual or even multiple clinical analyses on one strip of paper while still using only small volumes of a single sample. The capability of lab on paper for detection of importance clinical analyte protein in urine, saliva and blood samples has been demonstrate successfully. Lab on paper as a diagnostic system is small, disposable, and easy to use and requires no external equipment, reagents, or power sources. This kind of diagnostic system is attractive for use in developing countries, in the field, or as a low-cost alternative to more-advanced technologies already used in clinical diagnostics. Keywords: Lab-on-a-paper, Point-of-care, Visual detection, Clinical diagnostic, Disposable sensor


2013 ◽  
Vol 7 (2) ◽  
Author(s):  
Noah Pestana ◽  
David Walsh ◽  
Adam Hatch ◽  
Paul Hahn ◽  
Glenn J. Jaffe ◽  
...  

Microfluidic fluorescence assay devices show great promise as preclinical and clinical diagnostic instruments. Normally, fluorescence signals from microfluidic chips are quantified by analysis of images obtained with a commercial fluorescence microscope. This method is unnecessarily expensive, time consuming, and requires significant operator training, particularly when considering future clinical translation of the technology. In this work, we developed a dedicated low cost fluorescence microfluidic device reader (FMDR) to read sandwich immunofluorescence assay (sIFA) devices configured to detect vascular endothelial growth factor ligand concentrations in ocular fluid samples. Using a series of sIFA calibration standards and a limited set of human ocular fluid samples, we demonstrated that our FMDR reader has similar sensitivity and accuracy to a fluorescence microscope for this task, with significantly lower total cost and reduced reading time. We anticipate that the reader could be used with minor modifications for virtually any fluorescence microfluidic device.


2002 ◽  
Vol 729 ◽  
Author(s):  
Chong H. Ahn ◽  
Jin-Woo Choi ◽  
Sanghyo Kim ◽  
Young-Soo Sohn ◽  
Aniruddha Puntambekar ◽  
...  

AbstractThis paper presents an overview of the development of novel disposable smart plastic fluidic biochips for clinical diagnostic applications. The biochip is manufactured using a low-cost, rapid turn around injection molding/embossing process on a plastic substrate. The plastic fluidic biochip uses a novel sPROMs (structurally programmable microfluidic system) approach to achieve passive control of fluidic sequencing [1-2]. The plastic biochip also uses an on-chip pressurized air source for fluidic movement thus eliminating the need for active driving mechanisms and allowing for a truly disposable approach. Furthermore, electrochemical biosensors are also integrated on-chip to analyze various metabolically significant parameters such as PO2(partial pressure of oxygen), Glucose, Lactate,and pH. The fluidic biochip is being developed for point-of-care health monitoring applications where parameters such as small size, simplicity of operation, disposability, reduced cross-contamination are vital. The issues mentioned above are successfully addressed using the approach of this work and are discussed in this paper.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 604
Author(s):  
Yuxin Zhang ◽  
Tim Cole ◽  
Guolin Yun ◽  
Yuxing Li ◽  
Qianbin Zhao ◽  
...  

Portability and low-cost analytic ability are desirable for point-of-care (POC) diagnostics; however, current POC testing platforms often require time-consuming multiple microfabrication steps and rely on bulky and costly equipment. This hinders the capability of microfluidics to prove its power outside of laboratories and narrows the range of applications. This paper details a self-contained microfluidic device, which does not require any external connection or tubing to deliver insert-and-use image-based analysis. Without any microfabrication, magnetorheological elastomer (MRE) microactuators including pumps, mixers and valves are integrated into one modular microfluidic chip based on novel manipulation principles. By inserting the chip into the driving and controlling platform, the system demonstrates sample preparation and sequential pumping processes. Furthermore, due to the straightforward fabrication process, chips can be rapidly reconfigured at a low cost, which validates the robustness and versatility of an MRE-enabled microfluidic platform as an option for developing an integrated lab-on-a-chip system.


2019 ◽  
Vol 11 (4) ◽  
pp. 314-315
Author(s):  
James S Leathers ◽  
Maria Belen Pisano ◽  
Viviana Re ◽  
Gertine van Oord ◽  
Amir Sultan ◽  
...  

Abstract Background Treatment of HCV with direct-acting antivirals has enabled the discussion of HCV eradication worldwide. Envisioning this aim requires implementation of mass screening in resource-limited areas, usually constrained by testing costs. Methods We validated a low-cost, rapid diagnosis test (RDT) for HCV in three different continents in 141 individuals. Results The HCV RDT showed 100% specificity and sensitivity across different samples regardless of genotype or viral load (in samples with such information, 90%). Conclusions The HCV test validated in this study can allow for HCV screening in areas of need when properly used.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Gaikwad ◽  
P. R. Thangaraj ◽  
A. K. Sen

AbstractThe levels of hydrogen peroxide ($${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 ) in human blood is of great relevance as it has emerged as an important signalling molecule in a variety of disease states. Fast and reliable measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the blood, however, continues to remain a challenge. Herein we report an automated method employing a microfluidic device for direct and rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in human blood based on laser-induced fluorescence measurement. Our study delineates the critical factors that affect measurement accuracy—we found blood cells and soluble proteins significantly alter the native $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the time interval between sample withdrawal and detection. We show that separation of blood cells and subsequent dilution of the plasma with a buffer at a ratio of 1:6 inhibits the above effect, leading to reliable measurements. We demonstrate rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in plasma in the concentration range of 0–49 µM, offering a limit of detection of 0.05 µM, a sensitivity of 0.60 µM−1, and detection time of 15 min; the device is amenable to the real-time measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in the patient’s blood. Using the linear correlation obtained with known quantities of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 , the endogenous $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 concentration in the blood of healthy individuals is found to be in the range of 0.8–6 µM. The availability of this device at the point of care will have relevance in understanding the role of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in health and disease.


Sign in / Sign up

Export Citation Format

Share Document