scholarly journals Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 935
Author(s):  
Soheila Shabaniverki ◽  
Jaime J. Juárez

Particle-polymer dispersions are ubiquitous in additive manufacturing (AM), where they are used as inks to create composite materials with applications to wearable sensors, energy storage materials, and actuation elements. It has been observed that directional alignment of the particle phase in the polymer dispersion can imbue the resulting composite material with enhanced mechanical, electrical, thermal or optical properties. Thus, external field-driven particle alignment during the AM process is one approach to tailoring the properties of composites for end-use applications. This review article provides an overview of externally directed field mechanisms (e.g., electric, magnetic, and acoustic) that are used for particle alignment. Illustrative examples from the AM literature show how these mechanisms are used to create structured composites with unique properties that can only be achieved through alignment. This article closes with a discussion of how particle distribution (i.e., microstructure) affects mechanical properties. A fundamental description of particle phase transport in polymers could lead to the development of AM process control for particle-polymer composite fabrication. This would ultimately create opportunities to explore the fundamental impact that alignment has on particle-polymer composite properties, which opens up the possibility of tailoring these materials for specific applications.

2021 ◽  
Vol 1 ◽  
pp. 2841-2850
Author(s):  
Didunoluwa Obilanade ◽  
Christo Dordlofva ◽  
Peter Törlind

AbstractOne often-cited benefit of using metal additive manufacturing (AM) is the possibility to design and produce complex geometries that suit the required function and performance of end-use parts. In this context, laser powder bed fusion (LPBF) is one suitable AM process. Due to accessibility issues and cost-reduction potentials, such ‘complex’ LPBF parts should utilise net-shape manufacturing with minimal use of post-process machining. The inherent surface roughness of LPBF could, however, impede part performance, especially from a structural perspective and in particular regarding fatigue. Engineers must therefore understand the influence of surface roughness on part performance and how to consider it during design. This paper presents a systematic literature review of research related to LPBF surface roughness. In general, research focuses on the relationship between surface roughness and LPBF build parameters, material properties, or post-processing. Research on design support on how to consider surface roughness during design for AM is however scarce. Future research on such supports is therefore important given the effects of surface roughness highlighted in other research fields.


Author(s):  
Anil Saigal ◽  
John R. Tumbleston ◽  
Hendric Vogel

In the rapidly growing field of additive manufacturing (AM), the focus in recent years has shifted from prototyping to manufacturing fully functional, ultralight, ultrastiff end-use parts. This research investigates the mechanical behavior of octahedral, octet, vertex centroid, dode, diamond, rhombi octahedron, rhombic dodecahedron and solid lattice structured polyacrylate fabricated using Continuous Liquid Interface Production (CLIP) technology based on 3D printing and additive manufacturing processes. The compressive stress-strain behavior of the lattice structures observed is typical of cellular structures which include a region of nominally elastic response, yielding, plastic strain hardening to a peak in strength, followed by a drop in flow stress to a plateau region and finally rapid hardening associated with contact of the deformed struts with each other as part of densification. It was found that the elastic modulus and strength of the various lattice structured materials are proportional to each other. In addition, it was found that the octahedral, octet and diamond lattice structures are amongst the most efficient based on the measured specific stiffness and specific strength.


2013 ◽  
Vol 315 ◽  
pp. 63-67 ◽  
Author(s):  
Muhammad Fahad ◽  
Neil Hopkinson

Rapid prototyping refers to building three dimensional parts in a tool-less, layer by layer manner using the CAD geometry of the part. Additive Manufacturing (AM) is the name given to the application of rapid prototyping technologies to produce functional, end use items. Since AM is relatively new area of manufacturing processes, various processes are being developed and analyzed for their performance (mainly speed and accuracy). This paper deals with the design of a new benchmark part to analyze the flatness of parts produced on High Speed Sintering (HSS) which is a novel Additive Manufacturing process and is currently being developed at Loughborough University. The designed benchmark part comprised of various features such as cubes, holes, cylinders, spheres and cones on a flat base and the build material used for these parts was nylon 12 powder. Flatness and curvature of the base of these parts were measured using a coordinate measuring machine (CMM) and the results are discussed in relation to the operating parameters of the process.The result show changes in the flatness of part with the depth of part in the bed which is attributed to the thermal gradient within the build envelope during build.


2018 ◽  
Vol 8 (10) ◽  
pp. 1837 ◽  
Author(s):  
Niklas Kretzschmar ◽  
Sergei Chekurov ◽  
Mika Salmi ◽  
Jukka Tuomi

Additive manufacturing of digital spare parts offers promising new possibilities for companies to drastically shorten lead times and to omit storage costs. However, the concept of digital spare parts has not yet gained much footing in the manufacturing industry. This study aims to identify grounds for its selective rejection. Conducted from a corporate perspective, outlining a holistic supply chain network structure to visualize different digital spare part distribution scenarios, this survey study evaluates technical and economic additive manufacturing capabilities. Results are analyzed and discussed further by applying the Mann-Whitney test to examine the influence of the company size and the presence of 3D-printed end-use components within supply networks on gathered data. Machines’ limited build chamber volumes and the necessity of post-processing are considered as the main technical challenges of current additive manufacturing processes. Furthermore, it can be concluded that company sizes have a significant effect on perceived technological limitations. Overall, the results lead to the conclusion that the readiness level of the digital spare parts concept demands for further development.


Author(s):  
Kathryn L. Kirsch ◽  
Karen A. Thole

The increased design space offered by additive manufacturing can inspire unique ideas and different modeling approaches. One tool for generating complex yet effective designs is found in numerical optimization schemes, but until relatively recently, the capability to physically produce such a design had been limited by manufacturing constraints. In this study, a commercial adjoint optimization solver was used in conjunction with a conventional flow solver to optimize the design of wavy microchannels, the end use of which can be found in gas turbine airfoil skin cooling schemes. Three objective functions were chosen for two baseline wavy channel designs: minimize the pressure drop between channel inlet and outlet, maximize the heat transfer on the channel walls and maximize the ratio between heat transfer and pressure drop. The optimizer was successful in achieving each objective and generated significant geometric variations from the baseline study. The optimized channels were additively manufactured using Direct Metal Laser Sintering and printed reasonably true to the design intent. Experimental results showed that the high surface roughness in the channels prevented the objective to minimize pressure loss from being fulfilled. However, where heat transfer was to be maximized, the optimized channels showed a corresponding increase in Nusselt number.


2018 ◽  
Vol 4 (1) ◽  
pp. 1800271 ◽  
Author(s):  
Guo Dong Goh ◽  
Yee Ling Yap ◽  
Shweta Agarwala ◽  
Wai Yee Yeong

2020 ◽  
Vol 106 (9-10) ◽  
pp. 3849-3857
Author(s):  
S. Saliba ◽  
J. C. Kirkman-Brown ◽  
L. E. J. Thomas-Seale

AbstractAdditive manufacturing (AM) is expected to generate huge economic revenue by 2025; however, this will only be realised by overcoming the barriers that are preventing its increased adoption to end-use parts. Design for AM (DfAM) is recognised as a multi-faceted problem, exasperated by constraints to creativity, knowledge propagation, insufficiencies in education and a fragmented software pipeline. This study proposes a novel approach to increase the creativity in DfAM. Through comparison between DfAM and in utero human development, the unutilised potential of design through the time domain was identified. Therefore, the aim of the research is to develop a computer-aided manufacturing (CAM) programme to demonstrate design through the time domain, known as Temporal DfAM (TDfAM). This was achieved through a bespoke MATLAB code which applies a linear function to a process parameter, discretised across the additive build. TDfAM was demonstrated through the variation of extrusion speed combined with the infill angle, through the axial and in-plane directions. It is widely accepted in the literature that AM processing parameters change the properties of AM materials. Thus, the application of the TDfAM approach offers the engineer increased creative scope and control, whilst inherently upskilling knowledge, in the design of AM materials.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ümit Çevik ◽  
Menderes Kam

In addition to traditional manufacturing methods, Additive Manufacturing (AM) has become a widespread production technique used in the industry. The Fused Deposition Modeling (FDM) method is one of the most known and widely used additive manufacturing techniques. Due to the fact that polymer-based materials used as depositing materials by the FDM method in printing of parts have insufficient mechanical properties, the technique generally has limited application areas such as model making and prototyping. With the development of polymer-based materials with improved mechanical properties, this technique can be preferred in wider application areas. In this context, analysis of the mechanical properties of the products has an important role in the production method with FDM. This study investigated the mechanical properties of the products obtained by metal/polymer composite filament production and FDM method in detail. It was reviewed current literature on the production of metal/polymer composite filaments with better mechanical properties than filaments compatible with three-dimensional (3D) printers. As a result, it was found that by adding reinforcements of composites in various proportions, products with high mechanical properties can be obtained. Thus, it was predicted that the composite products obtained in this way can be used in wider application areas.


Author(s):  
Tiffaney Flaata ◽  
Gregory J. Michna ◽  
Todd Letcher

Additive manufacturing, the layer-by-layer creation of parts, was initially used for rapid prototyping of new designs. Recently, due to the decrease in the cost and increase in the resolution and strength of additively manufactured parts, additive manufacturing is increasingly being used for production of parts for end-use applications. Fused Deposition Modeling (FDM), a type of 3d printing, is a process of additive manufacturing in which a molten thermoplastic material is extruded to create the desired geometry. Many potential heat transfer applications of 3d printed parts, including the development of additively manufactured heat exchangers, exist. In addition, the availability of metal/polymer composite filaments, first used for applications such as tooling for injection molding applications and to improve wear resistance, could lead to increased performance 3d printed heat exchangers because of the higher thermal conductivity of the material. However, the exploitation of 3d printing for heat transfer applications is hindered by a lack of reliable thermal conductivity data for as-printed materials, which typically include significant void fractions. In this experimental study, an apparatus to measure the effective thermal conductivity of 3d printed composite materials was designed and fabricated. Its ability to accurately measure the thermal conductivity of polymers was validated using a sample of acrylic, whose conductivity is well understood. Finally, the thermal conductivities of various 3d printed polymer, metal/polymer composite, and carbon/polymer composite filaments were measured and are reported in this paper. The materials used are acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), stainless steel/PLA, Brass/PLA, and Bronze/PLA.


Sign in / Sign up

Export Citation Format

Share Document