scholarly journals Design and Fabrication of Double-Layer Crossed Si Microchannel Structure

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1557
Author(s):  
Yipeng Wang ◽  
Weijian Zhou ◽  
Tieying Ma

A four-step etching method is used to prepare the double-layer cross Si microchannel structure. In the first etching step, a <100> V-groove structure is etched on (100) silicon, and the top channel is formed after thermal oxidation with the depth of the channel and the slope of its sidewall being modulated by the etching time. The second etching step is to form a sinking substrate, and then the third step is to etch the bottom channel at 90° (<100> direction) and 45° (<110> direction) with the top channel, respectively. Hence, the bottom channel on the sink substrate is half-buried into the top channel. Undercut characteristic of 25% TMAH is used to perform the fourth step, etching through the overlapping part of the two layers of channels to form a double-layer microchannel structure. Different from the traditional single-layer microchannels, the double-layer crossed microchannels are prepared by the four-step etching method intersect in space but are not connected, which has structural advantages. Finally, when the angle between the top and bottom is 90°, the root cutting time at the intersection is up to 6 h, making the width of the bottom channel 4–5 times that of the top channel. When the angle between the top and bottom is 45°, the root cutting time at the intersection is only 4 h, and due to the corrosion along (111), the corrosion speed of the sidewall is very slow and the consistency of the width of the upper and lower channels is better than 90° after the end. Compared with the same-plane cross channel structure, the semiburied microchannel structure avoids the V-shaped path at the intersection, and the fluid can pass through the bottom channel in a straight line and cross with the top channel without overlapping, which has a structural advantage. If applied to microfluidic technology, high-efficiency delivery of two substances can be carried out independently in the same area; if applied to microchannel heat dissipation technology, the heat conduction area of the fluid can be doubled under the same heat dissipation area, thereby increasing the heat dissipation efficiency.

2016 ◽  
Vol 16 (4) ◽  
pp. 3659-3663
Author(s):  
H Yu ◽  
L Zhang ◽  
X. H Li ◽  
H. Y Xu ◽  
Y. C Liu

The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitrogenated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.


2011 ◽  
Vol 145 ◽  
pp. 520-524 ◽  
Author(s):  
Yan Tang Huang ◽  
Xiao Hua Wang ◽  
Ri Yan Bao

Optical tapered fiber is one of the most high efficiency evanescent wave coupler for coupling light into and out the optical microcavity. We fabricated the tapered fiber with etching method in a designed groove with HF solution. This method was low cost, readily, and controllable. An etching groove had an oval in the middle and small V-shape towards both sides. HF solution was injected into the oval groove, while the deioned water was injected into the two V-grooves. Because of the solution diffusion, the etching rate was fast in the mid and decreased gradually towards both sides,the tapered fiber was fabricated. The optical power meter was monitoring the fiber transmission during the etching process. The transmission of the tapered fiber was 98%. We proposed a mathematics model to depict the etching process, containing the relationship between the diameter of tapered fiber and the concentration of the HF solution, the etching time, humidity, temperature. We supervised the optical intensity to deduce the tapered fiber diameter. Surface morphology with AFM was detected, the roughness of the tapered fiber surface is less than 1nm. As an evanescent coupler, we used the tapered fiber to transmit 980nm pump laser to couple to Er3+doped microsphere to stimulate 1557nm laser.


2020 ◽  
Vol 50 (2) ◽  
Author(s):  
Chenhao Gao ◽  
Bo Wang ◽  
Chen Fu ◽  
Jimin Fang_ ◽  
Kunhua Wen ◽  
...  

In this paper, a novel double-layer three-port grating is described. The incident grating structure is in the second-order Littrow configuration. The grating region is composed of fused silica and Ta2O5. The designed grating beam splitter has high efficiency under TE polarization and TM polarization, respectively. The efficiency of two polarizations is more than 90%. In addition, compared with a single-layer three-port grating, this new beam splitter has good fabrication tolerance and incident bandwidth. Therefore, the optimized structure has a good application value.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 93-99
Author(s):  
SEYYED MOHAMMAD HASHEMI NAJAFI ◽  
DOUGLAS BOUSFIELD, ◽  
MEHDI TAJVIDI

Cracking at the fold of publication and packaging paper grades is a serious problem that can lead to rejection of product. Recent work has revealed some basic mechanisms and the influence of various parameters on the extent of crack area, but no studies are reported using coating layers with known mechanical properties, especially for double-coated systems. In this study, coating layers with different and known mechanical properties were used to characterize crack formation during folding. The coating formulations were applied on two different basis weight papers, and the coated papers were folded. The binder systems in these formulations were different combinations of a styrene-butadiene latex and mixtures of latex and starch for two different pigment volume concentrations (PVC). Both types of papers were coated with single and double layers. The folded area was scanned with a high-resolution scanner while the samples were kept at their folded angle. The scanned images were analyzed within a constant area. The crack areas were reported for different types of papers, binder system and PVC values. As PVC, starch content, and paper basis weight increased, the crack area increased. Double layer coated papers with high PVC and high starch content at the top layer had more cracks in comparison with a single layer coated paper, but when the PVC of the top layer was low, cracking area decreased. No measurable cracking was observed when the top layer was formulated with a 100% latex layer.


2009 ◽  
Author(s):  
Alvaro Sanabria ◽  
Gabriel Gomez ◽  
Eduardo Valdivieso ◽  
C Bermudez

2005 ◽  
Author(s):  
Alvaro Sanabria ◽  
Gabriel Gomez ◽  
Eduardo Valdivieso ◽  
C Bermudez

2003 ◽  
Vol 125 (1) ◽  
pp. 103-109 ◽  
Author(s):  
C. Ramaswamy ◽  
Y. Joshi ◽  
W. Nakayama ◽  
W. B. Johnson

The current study involves two-phase cooling from enhanced structures whose dimensions have been changed systematically using microfabrication techniques. The aim is to optimize the dimensions to maximize the heat transfer. The enhanced structure used in this study consists of a stacked network of interconnecting channels making it highly porous. The effect of varying the pore size, pitch and height on the boiling performance was studied, with fluorocarbon FC-72 as the working fluid. While most of the previous studies on the mechanism of enhanced nucleate boiling have focused on a small range of wall superheats (0–4 K), the present study covers a wider range (as high as 30 K). A larger pore and smaller pitch resulted in higher heat dissipation at all heat fluxes. The effect of stacking multiple layers showed a proportional increase in heat dissipation (with additional layers) in a certain range of wall superheat values only. In the wall superheat range 8–13 K, no appreciable difference was observed between a single layer structure and a three layer structure. A fin effect combined with change in the boiling phenomenon within the sub-surface layers is proposed to explain this effect.


Author(s):  
Ping Wang ◽  
Jun Lai ◽  
Tao Liao ◽  
Jingmang Xu ◽  
Jian Wang ◽  
...  

Train derailments in railway switches are becoming more and more common, which have caused serious casualties and economic losses. Most previous studies ignored the derailment mechanism when vehicles pass through the turnout. With this consideration, this work aims to research the 3D derailment coefficient limit and passing performance in turnouts through the quasi-static analysis and multi-body dynamic simulation. The proposed derailment criteria have considered the influence of creep force and wheelset yaw angle. Results show that there are two derailing stages in switch panel, which are climbing the switch rail and stock rail, respectively. The 3D derailment coefficient limit at the region of top width 5 mm to 20 mm is much lower than the main track rail, which shows that wheels are more likely to derail in this area. The curve radius before the switch rail is suggested to be set as 350 m. When the curve radius before turnout is 65 m, the length of the straight line between the curve and turnout needs to be larger than 3 m. This work can provide a good understanding of the derailment limit and give guidance to set safety criteria when vehicles pass through the turnout.


Sign in / Sign up

Export Citation Format

Share Document