scholarly journals About the Implementation of Frequency Conversion Processes in Solar Cell Device Simulations

Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 435 ◽  
Author(s):  
Alexander Quandt ◽  
Tahir Aslan ◽  
Itumeleng Mokgosi ◽  
Robert Warmbier ◽  
Maurizio Ferrari ◽  
...  

Solar cells are electrical devices that can directly convert sunlight into electricity. While solar cells are a mature technology, their efficiencies are still far below the theoretical limit. The major losses in a typical semiconductor solar cell are due to the thermalization of electrons in the UV and visible range of the solar spectrum, the inability of a solar cell to absorb photons with energies below the electronic band gap, and losses due to the recombination of electrons and holes, which mainly occur at the contacts. These prevent the realization of the theoretical efficiency limit of 85% for a generic photovoltaic device. A promising strategy to harness light with minimum thermal losses outside the typical frequency range of a single junction solar cell could be frequency conversion using rare earth ions, as suggested by Trupke. In this work, we discuss the modelling of generic frequency conversion processes in the context of solar cell device simulations, which can be used to supplement experimental studies. In the spirit of a proof-of-concept study, we limit the discussion to up-conversion and restrict ourselves to a simple rare earth model system, together with a basic diode model for a crystalline silicon solar cell. The results of this show that these simulations are very useful for the development of new types of highly efficient solar cells.

1970 ◽  
Vol 46 (1) ◽  
pp. 117-122 ◽  
Author(s):  
M Eusuf ◽  
M Khanam ◽  
S Khatun

In part II of this series, it was reported that the solar home system (SHS) supplied by REB in some islands of the Meghna river in the district of Narsingdi could not meet the demand of the recipients in the rainy season when the sky remained overcast with cloud. The tilt angle for all installations was 45° facing south. In this study, effects of direct and diffuse sunlight with variation of tilt angles from 0° to 45° were studied using a mono crystalline silicon cell. Pyranometer and the solar panel were kept under identical conditions. Energy absorbed by the solar panel in diffuse sunlight was found 0.55% of that received by the Pyranometer under similar conditions showing that mono crystalline silicon solar cell of the type under study was not suitable for use in SHS. Moreover, the gap between the panel and the solid surface below it has significant effects on the efficiency of the solar cell. Further similar study using different kinds of cells- mono crystalline, poly crystalline and amorphous is needed for proper designs of SHS. Optimization of the gap between the panel and the solid surface below it is important for roof-mounted and ground-mounted panels. Key words: Silicon solar cells; Tilt angle; Diffuse light; Home lighting; Monocrystaline. DOI: http://dx.doi.org/10.3329/bjsir.v46i1.8114 Bangladesh J. Sci. Ind. Res. 46(1), 117-122, 2011   


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2931
Author(s):  
Kwan Hong Min ◽  
Taejun Kim ◽  
Min Gu Kang ◽  
Hee-eun Song ◽  
Yoonmook Kang ◽  
...  

Since the temperature of a photovoltaic (PV) module is not consistent as it was estimated at a standard test condition, the thermal stability of the solar cell parameters determines the temperature dependence of the PV module. Fill factor loss analysis of crystalline silicon solar cell is one of the most efficient methods to diagnose the dominant problem, accurately. In this study, the fill factor analysis method and the double-diode model of a solar cell was applied to analyze the effect of J01, J02, Rs, and Rsh on the fill factor in details. The temperature dependence of the parameters was compared through the passivated emitter rear cell (PERC) of the industrial scale solar cells. As a result of analysis, PERC cells showed different temperature dependence for the fill factor loss of the J01 and J02 as temperatures rose. In addition, we confirmed that fill factor loss from the J01 and J02 at elevated temperature depends on the initial state of the solar cells. The verification of the fill factor loss analysis was conducted by comparing to the fitting results of the injection dependent-carrier lifetime.


2010 ◽  
Vol 74 ◽  
pp. 170-175 ◽  
Author(s):  
Ben Minnaert ◽  
Peter Veelaert

Most commercially available photovoltaic solar cells are crystalline silicon cells. However, in indoor environments, the efficiency of Si-cells is poor. Typically, the light intensity under artificial lighting conditions is less than 10 W/m² as compared to 100-1000 W/m² under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum and there is more diffuse than direct light. Taken into account the predicted cheaper costs for the production of organic solar cells, a possible niche market for organic PV can be indoor applications. In this article, we study the properties and suitability of several bulk heterojunction organic solar cells (with distinct different absorption spectra) for different indoor conditions. We simulate different light environments and use a silicon solar cell as reference. Depending on the required power for the indoor device, we determine minimum requirements for the environment (light intensity and indoor spectrum) and for the organic solar cell (absorption spectrum and surface area). In this way we determine the appropriateness and conditions for a competitive indoor use of organic solar cells.


2013 ◽  
Vol 16 (1) ◽  
pp. 48-56
Author(s):  
Vu Ngoc Hoang ◽  
Linh Ngoc Tran ◽  
Lan Truong ◽  
Khoa Thanh Nhat Phan ◽  
Chien Mau Dang ◽  
...  

In this report we present series of experiments during which the short circuit current of mono crystalline silicon solar cell was improved step by step so as a consequence the efficiency was increased. At first, the front contact of solar cell was optimized to reduce the shadow loss and the series resistance. Then surface treatments were prepared by TMAH solution to reduce the total light reflectance and to improve the light trapping effect. Finally, antireflection coatings were deposited to passivate the front surface either by silicon nitride thin layer or to increase the collection probability by indium tin oxide layer, and to reduce the reflectance of light. As a result, solar cells of about 13% have been obtained, with the average open circuit voltage Voc about 527mV, with the fill factor about 68% and the short circuit current about 7.92 mA/cm2 under the irradiation density of 21 mW/cm2.


2016 ◽  
Vol 852 ◽  
pp. 378-384
Author(s):  
Ming Fu ◽  
Hong Yong Li ◽  
Yue Wang ◽  
Lin Fan ◽  
Dong Chen ◽  
...  

High-performance ultrafine silver powder used as crystalline silicon solar cell front conductive paste was prepared by chemical liquid-phase reduction method using silver nitrate as metal source, ascorbic acid as reductant, and gelatin as dispersant. The effects of reducing agent concentration, doses of dispersant, PH value of reaction solution and reaction temperature on the performance of silver powder were studied. The morphology, particle size and dispersibility of silver powder were observed by scanning electron microscope (SEM). The size distribution of silver particles was characterized by laser particle size analyzer. The crystalline silicon solar cells were produced by screen-printing front conductive silver paste, made with the obtained silver powder. The photoelectric properties of the solar cells were measured by solar simulator. The processing parameters of preparation silver powder, which meets the requirement of making high conversion efficiency solar cells, were optimized.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Utpal Gangopadhyay ◽  
Sukhendu Jana ◽  
Sayan Das ◽  
Sutapa Garain ◽  
Soma Ray

Building-integrated photovoltaic (BIPV) systems represent an interesting, alternative approach for increasing the available area for electricity production and potentially for further reducing the cost of solar electricity. In BIPV systems, the visual impression of a solar module becomes important, including its color. However, the range of solar cell colours and shapes currently on offer to architects and BIPV system designers is still very limited, and this is a barrier to the widespread use of PV modules as a constructional “material.” The color of a solar module is determined by the color of the cells in the module, which is given by the antireflection coating (ARC). However, access to efficient, but differently colored, solar cells is important for the further development of BIPV systems. In this paper, we have used Diamond-like nanocomposite layer as an Antireflective Nanocomposite based (ARNAB) coating material for crystalline silicon solar cell, and the impact of varying the color of an ARC upon the optical characteristics and efficiency of a solar cell is investigated. In addition to a comparison of the optical characteristics of such solar cells, the effect of using colored ARCs on solar cell efficiency is quantified using the solar cell modeling tool PC1D.


2018 ◽  
Vol 29 (8) ◽  
pp. 1495-1511 ◽  
Author(s):  
Vivek Kumar ◽  
Amit Kumar ◽  
Hrishikesh Dhasmana ◽  
Abhishek Verma ◽  
PK Bhatnagar ◽  
...  

In summer season, temperature of solar panels increases thereby decreases the working efficiencies of the solar cells by a larger factor, sometime even up to 3–4%. The present research paper reports a carbon-based porous thermal cooling layer, which acts as a heat dissipating agent beneath the poly-crystalline silicon solar cell. The thermal cooling layer has highly porous structure with average interpore and intrapore size to be 6 µm–0.6 µm and 11.5 Å, respectively, which enhances the surface area (798.35 m2/g) and generates numbers of air channels within the sheet for higher heat dissipation. Thermal cooling layer’s thickness-dependent studies confirm that an optimum thickness of 14 mm shows the highest cooling efficiency. The thermal cooling layer beneath the solar cell decreases the working temperature of the cell up to 18.5°C. The open-circuit voltage recorded for the solar cell (with optimized thickness of thermal cooling layer beneath the cell) increases to 0.56 V from 0.52 V (device without thermal cooling layer) at real time condition, which leads to increase the working efficiency of the cell by 9.6%. The theoretically calculated and experimentally measured efficiency of the solar cell at various temperatures are compared and shows good agreement between experimental data and theory. This investigation reveals that the used thermal cooling layer can significantly improve the device working efficiency in a simple and cost-effective manner.


2018 ◽  
Vol 14 (1) ◽  
pp. 5331-5351
Author(s):  
A. M. Abd El-Maksood

The present paper is a trial to shed further light on the dependence performance of mono-crystalline silicon solar cell (photovoltaic cell) on the environmental conditions. In this concern, the static (I-V) and dynamic (C-V) characteristics measurement were studied in details under the effect of illumination type, intensity and wavelength, as well temperature on the physical and electrical parameters of solar cell. The dependence of cell parameters- extracted from (I-V) characteristic curves- open-circuit voltage (Voc), short-circuit current (Isc), fill-factor (FF), conversion efficiency (η) as well the series -and shunt-resistances (Rs and Rsh), on the intensity has been investigated for a wide illumination intensity range 1.0 - 70 mW/cm2. It was observed that, for illumination levels higher than 10 klux, the values of Voc, Rsh, FF and efficiency were shown to be saturated. Isc was shown to be increased linearly, while Rs decreased exponentially as a function of illumination level. On the other hand, considering the dynamic characteristics (C-V), a detailed study was carried out for solar cells biased on both the forward - and reverse modes at frequency range of 20 kHz - 140 kHz and different illumination - levels. From which, the barrier potential (Vbi) and doping (charge carrier) concentration (Na) were determined. Besides, the influence of temperature within the range from 30 up to 110 oC on both the static and dynamic characteristics was tested. From which, it is clear that Voc, maximum powers (Pmax), FF, η of the sample were shown to be temperature decreasing functions. Moreover, Isc has a feeble increasing temperature coefficient. Finally, the solar cell capacitance (C) and dissipation factor (D) rise with rising temperature in both bias voltage conditions, while, impedance (Z), quality factor (Q), and phase angle (φ) reduce with rising temperature.


2009 ◽  
Vol 17 (2) ◽  
Author(s):  
P. Panek ◽  
K. Drabczyk ◽  
P. Zięba

AbstractThe paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.


Sign in / Sign up

Export Citation Format

Share Document