scholarly journals Thermal-Flow Characteristics of Ferrofluids in a Rotating Eccentric Cylinder under External Magnetic Force

Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 457 ◽  
Author(s):  
Jae-Hee Kim ◽  
Hyeon-Seok Seo ◽  
Youn-Jea Kim

Heat dissipation has become an important issue due to the miniaturization of various electronic devices. Various methods such as spray and nozzle coolers, heat sinks and so on are used for heat dissipation. However, the emergence of ferrofluids drastically improves the operating characteristics of electromagnetic systems and devices. A ferrofluid is a suspension containing 10-nm magnetic particles in a colloidal solution. This material exhibits paramagnetic behavior and is sensitive to magnetic field and temperature. In this study, heat transfer characteristics of ferrofluids in a rotating eccentric cylinder were investigated using the commercial code, COMSOL Multiphysics. Numerical results of the local Nusselt number, magnetophoretic force and velocity distributions were obtained from various eccentricities of the cylinder, and the results were graphically depicted with various flow conditions.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2286
Author(s):  
Jan Kominek ◽  
Martin Zachar ◽  
Michal Guzej ◽  
Erik Bartuli ◽  
Petr Kotrbacek

Miniaturization of electronic devices leads to new heat dissipation challenges and traditional cooling methods need to be replaced by new better ones. Polymer heat sinks may, thanks to their unique properties, replace standardly used heat sink materials in certain applications, especially in applications with high ambient temperature. Polymers natively dispose of high surface emissivity in comparison with glossy metals. This high emissivity allows a larger amount of heat to be dissipated to the ambient with the fourth power of its absolute surface temperature. This paper shows the change in radiative and convective heat transfer from polymer heat sinks used in different ambient temperatures. Furthermore, the observed polymer heat sinks have differently oriented graphite filler caused by their molding process differences, therefore their thermal conductivity anisotropies and overall cooling efficiencies also differ. Furthermore, it is also shown that a high radiative heat transfer leads to minimizing these cooling efficiency differences between these polymer heat sinks of the same geometry. The measurements were conducted at HEATLAB, Brno University of Technology.


Author(s):  
Nico Setiawan Effendi ◽  
Kyoung Joon Kim

A computational study is conducted to explore thermal performances of natural convection hybrid fin heat sinks (HF HSs). The proposed HF HSs are a hollow hybrid fin heat sink (HHF HS) and a solid hybrid fin heat sink (SHF HS). Parametric effects such as a fin spacing, an internal channel diameter, a heat dissipation on the performance of HF HSs are investigated by CFD analysis. Study results show that the thermal resistance of the HS increases while the mass-multiplied thermal resistance of the HS decreases associated with the increase of the channel diameter. The results also shows the thermal resistance of the SHF HS is 13% smaller, and the mass-multiplied thermal resistance of the HHF HS is 32% smaller compared with the pin fin heat sink (PF HS). These interesting results are mainly due to integrated effects of the mass-reduction, the surface area enhancement, and the heat pumping via the internal channel. Such better performances of HF HSs show the feasibility of alternatives to the conventional PF HS especially for passive cooling of LED lighting modules.


1994 ◽  
Vol 86 (5) ◽  
pp. 557-565 ◽  
Author(s):  
Margaret M. Ramsay ◽  
Fiona Broughton Pipkin ◽  
Peter C. Rubin ◽  
Robert Skidmore

1. Doppler recordings were made from the brachial artery of healthy female subjects during a series of manoeuvres which altered the pressure—flow characteristics of the vessel. 2. Changes were induced in the peripheral circulation of the forearm by the application of heat or icepacks. A sphygmomanometer cuff was used to create graded occlusion of the vessel above and below the point of measurement. Recordings were also made whilst the subjects performed a standardized Valsalva manoeuvre. 3. The Doppler recordings were analysed both with the standard waveform indices (systolic/diastolic ratio, pulsatility index and resistance index) and by the method of Laplace transform analysis. 4. The waveform parameters obtained by Laplace transform analysis distinguished the different changes in flow conditions; they thus had direct physiological relevance, unlike the standard waveform indices.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2003 ◽  
Vol 125 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Avram Bar-Cohen ◽  
Madhusudan Iyengar ◽  
Allan D. Kraus

The effort described herein extends the use of least-material single rectangular plate-fin analysis to multiple fin arrays, using a composite Nusselt number correlation. The optimally spaced least-material array was also found to be the globally best thermal design. Comparisons of the thermal capability of these optimum arrays, on the basis of total heat dissipation, heat dissipation per unit mass, and space claim specific heat dissipation, are provided for several potential heat sink materials. The impact of manufacturability constraints on the design and performance of these heat sinks is briefly discussed.


Author(s):  
Ji-Gu Lee ◽  
Ji-Yun Kang ◽  
Youn-Jea Kim

Induced Gas Flotation (IGF) vessel is used for water treatment of plant industries such as oil sand and chemical plants. An understanding of the interaction between the stator and rotor is essential for the design of IGF with consideration of geometric blade configuration is essential for the design of IGF. In this study, the effect of the number of stator blades on flotation performance was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. The two-phase (water and air) flow characteristics in the forced-air mechanically stirred Dorr-Oliver flotation cell were considered. The flotation performance was evaluated on the basis of the correlations among the number of stator blades (8, 12, 16, 20, 24), power number and void fraction. By comparing the result of each case, the newly designed model with 12 stator blades which had the highest flotation performance was derived.


2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1877-1884 ◽  
Author(s):  
Diego Alarcón ◽  
Eduardo. Balvís ◽  
Ricardo Bendaña ◽  
Alberto Conejero ◽  
de Fernández ◽  
...  

We present a detailed study of heating and cooling processes in LED luminaires with passive heat sinks. Our analysis is supported by numerical simulations as well as experimental measurements, carried on commercial systems used for outdoor lighting. We have focused our analysis on the common case of a single LED source in thermal contact with an aluminum passive heat sink, obtaining an excellent agreement with experimental measurements and the numerical simulations performed. Our results can be easily expanded, without loss of generality, to similar systems.


2021 ◽  
Author(s):  
Farhad Bahmanpouri ◽  
Silvia Barbetta ◽  
Carlo Gualtieri ◽  
Marco Ianniruberto ◽  
Naziano Filizola ◽  
...  

<p>When two mega rivers merge the mixing of two flows results in a highly complex three-dimensional flow structure in an area known as the confluence hydrodynamic zone. In the confluence zone, substantial changes occur to the hydrodynamic and morphodynamic features which are of significant interest for researchers. The confluence of the Negro and Solimões Rivers, as one of the largest river junctions on Earth, is the study area of the present research. During the EU-funded Project “Clim-Amazon” (2011-2015), velocity data were collected using an ADCP vessel operating under high and low flow conditions in different locations at that confluence (Gualtieri et al., 2019). By applying the Entropy theory developed by Chiu (1988) for natural channels and simplified by Moramarco et al. (2014), the two-dimensional velocity distribution, as well as depth-averaged velocity, were calculated at the different transects along the confluence zone, using only the surface velocities observation. The estimated data yielded 6.6% and 6.9% error percentage for the discharge data related to high and low flow conditions, respectively, and 8.4% and 8.3% error percentage for the velocity data related to high and low flow conditions, respectively. Regardless of the flow condition, these preliminary results also suggest the potential points at the confluence zone for the maximum local scouring. The findings of the current research highlighted the potential of Entropy theory to estimate the flow characteristics at the large river’s confluence, just starting from the measure of surface velocities. This is of considerable interest for monitoring high flows using no-contact technology, when ADCP or other contact equipment cannot be used for the safety of operators and risks for equipment loss.</p><p> </p><p>Keywords: Amazon River, Negro/Solimões Confluence, Entropy Theory, Velocity Distribution, Local Scouring</p><p>References</p><p>Gualtieri, C., Ianniruberto, M., Filizola, N. (2019). On the mixing of rivers with a difference in density: the case of the Negro/Solimões confluence, Brazil. Journal of Hydrology, 578(11), November 2019, 124029,</p><p>Chiu, C. L. (1988). “Entropy and 2-D velocity distribution in open channels”. Journal of Hydrologic Engineering, ASCE, 114(7), 738-756</p><p>Moramarco, T., Saltalippi, C., Singh, V.P. (2004). “Estimation of mean velocity in natural channels based on Chiu’s velocity distribution equation”. Journal of Hydrologic Engineering, ASCE, 9 (1), pp. 42-50</p>


Sign in / Sign up

Export Citation Format

Share Document