scholarly journals Respons tanaman tebu (Saccharum officinarum L.) terhadap aplikasi konsorsium biostimulan di tiga tipologi lahan

2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Ciptadi Achmad YUSUP ◽  
Deddy PURWANTORO ◽  
Happy WIDIASTUTI ◽  
. SISWANTO ◽  
Djoko SANTOSO ◽  
...  

The consortium biostimulant combines several types of biostimulant applied holistically, such as phytohormones to induce physiological processes, humic acid to improve nutrition intake and land fertility, and biofertilizer arbuscular mycorrhizal fungi to improve abiotic stress tolerance. The objectives of this research were to analyze the effect of application consortium biostimulant on the growth and productivity of Bululawang sugarcane variety planted in three land typologies, i.e. irrigated heavy soil with good drainage (BPL), irrigated heavy soil with poor drainage (BPJ), and rainfed light soil with good drainage (RHL). The research was conducted on plant cane (PC) sugarcane areal in Lumajang Regency, East Java, from July 2019 to September 2020. The treatment plot area was 1 ha for each land typologies, and the observation were conducted on 10 m plant row with ten times replications. Each treatment was replicated ten times. The results showed that the application of consortium biostimulant could induce faster growth of sugarcane shoots and better roots at one month after planting (MAP). Stalk height and diameter showed significantly different values between treatment and control at the plant age 6 to 12 MAP. In addition, the sugarcane stalk weight per meter row also increases by 13.72 – 28.57%. The growth performance of sugarcane on a commercial scale increased, also sugarcane productivity increased by 11.08 – 20.36%. The potential sugar yield increased by 15.05% in BPL land typology, 4.9% in BPJ land typology, and 9.7% in RHL land typology. The difference in land typologies affected the effectiveness of the consortium biostimulant application in increasing sugarcane productivity.

2021 ◽  
Vol 13 (3) ◽  
pp. 1226
Author(s):  
Ana Cruz-Silva ◽  
Andreia Figueiredo ◽  
Mónica Sebastiana

Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.


2001 ◽  
Vol 79 (10) ◽  
pp. 1161-1166 ◽  
Author(s):  
John N Klironomos ◽  
Miranda M Hart ◽  
Jane E Gurney ◽  
Peter Moutoglis

Arbuscular mycorrhizal fungal communities in northern temperate ecosystems must function during extremes in environmental conditions. However, it is not known if arbuscular mycorrhizal fungi that co-exist in soil communities have similar tolerances to stresses such as drought and freezing. The phenology of arbuscular mycorrhizal fungi was determined over one year in a community in southern Ontario, Canada. Five fungal species from the same community were then used to inoculate five plant species, in all possible combinations, and were subjected to either a freezing treatment or a drought treatment after which new seedlings were transplanted into the treated pots. The percent colonization of roots of each plant species was measured as the difference in mean colonization from the control. Freezing reduced percent colonization in almost every case, whereas drought resulted in both increased and decreased percent colonization. Fungal species responded differently to the treatments, and there was a pronounced plant × fungus effect. These results support the hypothesis that distinct functional groups of arbuscular mycorrhizal fungi exist, and these may determine plant community structure.Key words: arbuscular mycorrhizal fungi, freezing, drying, functional diversity.


2010 ◽  
Vol 82 (3) ◽  
pp. 771-777 ◽  
Author(s):  
Edson L. Souchie ◽  
Rosario Azcón ◽  
Jose M. Barea ◽  
Eliane M.R. Silva ◽  
Orivaldo J. Saggin-Júnior

This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L-1 of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 886
Author(s):  
Matteo Chialva ◽  
Luisa Lanfranco ◽  
Gianluca Guazzotti ◽  
Veronica Santoro ◽  
Mara Novero ◽  
...  

As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF) may be effective in enhancing plant resilience to drought, one of the major limiting factors threatening crop productivity. AMF host their own microbiota and previous data demonstrated that endobacteria thriving in Gigaspora margarita modulate fungal antioxidant responses. Here, we used the G. margarita–Candidatus Glomeribacter gigasporarum system to test whether the tripartite interaction between tomato, G. margarita and its endobacteria may improve plant resilience to combined water/nutrient stress. Tomato plants were inoculated with spores containing endobacteria (B+) or not (B-), and exposed to combined water/nutrient stress. Plants traits, AM colonization and expression of AM marker genes were measured. Results showed that mycorrhizal frequency was low and no growth effect was observed. Under control conditions, B+ inoculated plants were more responsive to the symbiosis, as they showed an up-regulation of three AM marker genes involved in phosphate and lipids metabolism compared with B− inoculated or not-inoculated plants. When combined stress was imposed, the difference between fungal strains was still evident for one marker gene. These results indicate that the fungal endobacteria finely modulate plant metabolism, even in the absence of growth response.


2017 ◽  
Vol 9 (2) ◽  
pp. 124-129
Author(s):  
Delvian Delvian

It has been reported that humic acid can increase plant growth and benefecial soil microbe population.   A glasshouse experiment was conducted to study the effect of humic acid on growth of host plant and sporulation of arbuscular mycorrhizal fungi under salt stress in trap pot culture. Trap cultures were maintenance at various salinity levels as according to field salinity.  Half of the pots received 2.5% humic acid and control treatment received no humic acid. Result of research indicate that humic acid  can increase growth of host plant and mycorrhizae sporulation at all salinity levels. Acaulospora  is highest   its spore production   followed by of Glomus and Gigaspora .


ZOOTEC ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 167
Author(s):  
Rifa E. Ansiga ◽  
A. Rumambi ◽  
D. A. Kaligis ◽  
I. Mansur ◽  
W. Kaunang

EXPLORATION OF ARBUSCULAR MYCORRHIZAL (AM) FUNGI IN FORAGE RHIZOSPHERES. This study aimed to determine the diversity of Arbuscular Mycorrhizal Fungi (AMF) in several kinds of hybrid forages Rhizospheres, either in grasses or legumes. Soil samples were taken from three different locations, consisted of: Mapanget (forages type: Leucaena leucocepala, Sorghum varieties numbu, Penicettum purpureum cv. Mott), Tateli (forages type: calothyrsus Calliandra, Gliricidia sepium) and Campus of UNSRAT, Manado (forage type: King grass). The soil samples which taken from forages rhizospheres were sieved using Brundrett method and then centrifuged.  Thereafter, isolation and identification of spore were carried out based on spore morphology character, involves: shape, size, color, hyphae attachment, and ornament. Extraction and identification of spores on six types of rhizosphere were found 34 different types of AMF spores in shape and color. In grass, it was found three types of spores, i.e.: Glomus, Acaulospora, and Sclerocystis, meanwhile in leguminous just one type of spore was found, i.e.: Glomus. The difference of rhizosphere in grass and leguminosae resulted in different types of spores, where Sclerocystis and Acaulospora are found in grasses, on the contrary Sclerocystis and Acaulospora are not found in leguminosae. Based on the number of spores of AMF, it seemed that Glomus types found to have the most number, while Sclerocystis and Acaulospora had the lowest number of spores found. Key words: Exploration, Arbuscular Mycorrhizal Fungi (AMF), Grass, Legume, Spores


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Navnita Sharma ◽  
Kuldeep Yadav ◽  
Ashok Aggarwal

The present investigation aimed to quantify the difference in response of twoPhaseolus mungoL. cultivars (i.e., UH-1 and IPU-94-1) toGlomus mosseae(G), that is,Funneliformis mosseae,Acaulospora laevis(A), andTrichoderma viride(T), in different combinations or alone. All the treatments were inoculated withBradyrhizobium japonicumto ensure nodulation as soil used in the experiment was sterilized. After 120 days of inoculation, plants were analyzed for chlorophyll content, nodulation, mycorrhization, leaf area, and protein content. Results indicate variation in growth response of two cultivars with different treatments. Triple inoculation of plants with G + A + T proved to be the best treatment for growth followed by G + T in both cultivars. Our work allowed the selection ofP. mungoL. cultivar UH-1 as highly mycorrhizal responsive as compared to IPU-94-1 andG. mosseaeto be an efficient bioinoculant as compared toA. laevisfor growth enhancement ofP. mungo. Further characterization ofP. mungogenotypes will enhance our knowledge of physiological and genetic mechanism behind increase in plant growth and yield due to AM symbiosis.


2016 ◽  
Vol 15 (2) ◽  
pp. 141
Author(s):  
Suswati . ◽  
Asmah Indrawaty ◽  
Friardi .

Ripe banana peroxidase activities with Glomus type 1. Ripe banana is very susceptible to blood disease caused by Blood disease bacterium (BDB) and Fusarium wilt caused by Fusarium oxysporum f.sp. cubense. Arbuscular mycorrhizal fungi (AMF) Glomus tipe 1 increased resistance of ripe banana seedlings to both wilt diseases. The resistance mechanism related with the change of hydrolytic enzyme activities: peroxidase (PO), phenylalanin amonialyase (PAL) and polyphenoloksidase (PPO). The green house and laboratorium experiment were conducted to study the effect of different colonization time 4, 12, 24, 36, 48, 72, 96 h after application (haa) and control (without AMF) with 3 replicates. AMF fresh inoculants source is a mixture of sand planting medium that containing spores, hyphae and corn root colonized AMF. Ripe banana seedlings (60 days old) were inoculated with 50 g fresh AMF inoculants and incubated with the treatment. The results showed that the application of Glomus tipe 1 caused changes in the enzyme activity of peroxidase in the roots and leaves. Root peroxidase enzyme activity slightly increased 5.84% (0.326U) at the beginning of colonization (4 haa) while peroxidase enzyme activity in leaves sharply declined (85.83–87.37%).


Author(s):  
Mepivoseth Castelán-Estrada ◽  
Emeterio Payró de la Cruz ◽  
Guadalupe De los Santos-López ◽  
Samuel Córdova-Sánchez ◽  
Juan F. Gómez-Leyva ◽  
...  

E Objective: A study was carried out in the Ingenio Santa Rosalía sugar mill supply area with the aim of identifying the soil subunits cultivated with sugar cane and to quantify the degree of mycorrhization of Saccharum officinarum. Design/Methodology/Approach: Rhizosphere samples were collected at a depth of 0-30 cm and root segments with diameters of ≤ 1 mm and 1-2.0 mm were studied. The intersect method and the fungal structures method were comparatively analyzed to determine the mycotrophic state of the roots. The study also quantified the number of spores in the soils and classified the morpho-species of vesicular-arbuscular mycorrhiza (VAM). Results: The results show that seven soil subunits exist in the area, but the intersect method did not detect differences in colonization by root diameter or by root colonization ( = 68.5%). For its part, the fungal structures method showed differences in colonization between soil subunits ( = 69.5%), being higher in thin roots, and statistical differences wer found for vesicles and spores. At the sites, an average of 696 spores was quantified per 100 g of soil, which indicates a high presence of vesicular-arbuscular mycorrhizal fungi in the study area. Finally, six species of mycorrhizae were identified, of which four are present in various soil subunits: Glomus aff. deserticola, Glomus etunicatum, Glomus viscosum, and Paraglomus occultum. Study Limitations/Implications: This was an exploratory study that indicates the potential of VAM. Findings/Conclusions: The presence of hyphae, vesicles, arbuscules, and spores indicates that there is an active mycotrophic process between VAM and sugarcane cultivation in the soils of the study area.


Sign in / Sign up

Export Citation Format

Share Document