scholarly journals Stimulated Growth and Innate Immunity in Brook Charr (Salvelinus fontinalis) Treated with a General Probiotic (Bactocell®) and Two Endogenous Probiotics That Inhibit Aeromonas salmonicida In Vitro

2019 ◽  
Vol 7 (7) ◽  
pp. 193 ◽  
Author(s):  
Gauthier ◽  
Rouleau-Breton ◽  
Charette ◽  
Derome

Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium causing furunculosis, an opportunistic infection of farmed salmonid fish. Current treatment methods against furunculosis rely heavily on antibiotherapy. However, strains of this opportunistic fish pathogen were found to possess genes that confer resistance to major antibiotics including those used to cure furunculosis. Therefore, dispensing bacterial symbionts as probiotics to susceptible hosts appears to be a promising alternative. Here, we present the genomic characterization and in vivo safety assessment of two brook charr (Salvelinus fontinalis) bacterial symbionts that inhibited A. salmonicida subsp. salmonicida growth in vitro (Pseudomonas fluorescens ML11A and Aeromonas sobria TM18) as well as a commercialized probiotic, Pediococcus acidilactici MA18/5M (Bactocell®). The genomic sequences of ML11A and TM18 obtained by whole-genome shotgun sequencing lack key virulence factor genes found in related pathogenic strains. Their genomic sequences are also devoid of genes involved in the inactivation (or target modification of) several key antimicrobial compounds used in salmonid aquaculture. Finally, when administered daily to live brook charr fingerlings, ML11A, TM18 and Bactocell® helped improve several physiological condition metrics such as mean body weight, Fulton’s condition factor and blood plasma lysozyme activity (an indicator for innate immune activity).

Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Meenakshi Srinivas Iyer ◽  
Anil Kumar Gujjari ◽  
Sathishbabu Paranthaman ◽  
Amr Selim Abu Lila ◽  
Khaled Almansour ◽  
...  

Denture stomatitis (DS), usually caused by Candida infection, is one of the common denture-related complications in patients wearing dentures. Clove and cinnamon oils have been acknowledged for their anti-inflammatory, antimicrobial activity, and antifungal effects in the oral cavity. The aim of this study, therefore, was to prepare clove/cinnamon oils-loaded emulgel and to assess its efficacy in treating Candida albicans-associated denture stomatitis. Central composite design was adopted to formulate and optimize clove/cinnamon extracts-loaded emulgel. The formulated preparations were assessed for their physical appearance, particle size, viscosity, spreadability, and in-vitro drug release. In addition, in-vivo therapeutic experiments were conducted on 42 patients with denture stomatitis. The prepared emulgel formulations showed good physical characteristics with efficient drug release within 3 h. In addition, in-vivo antifungal studies revealed that the optimized formula significantly (p < 0.001) reduced Candida colony counts from the denture surface, compared to commercially available gel (240.38 ± 27.20 vs. 398.19 ± 66.73 CFU/mL, respectively). Furthermore, the optimized formula and succeeded in alleviating denture stomatitis-related inflammation with a better clinical cure rate compared to commercially available gel Collectively, herbal extracts-loaded emulgel might be considered an evolution of polyherbal formulations and might represent a promising alternative to the existing allopathic drugs for the treatment of denture stomatitis, with better taste acceptability and no side effects.


2021 ◽  
Author(s):  
Shuang Lin ◽  
Yuanjia He ◽  
Meihan Tao ◽  
Aijun Wang ◽  
Qiang Ao

Abstract On account of the poor biocompatibility of synthetic prosthesis, millions of rhinoplasty recipients have been forced to choose autologous costal cartilage as grafts, which suffer from limited availability, morbidity at donor site and prolonged operation time. Here, as a promising alternative to autologous costal cartilage, we developed a novel xenogeneic costal cartilage and explored its feasibility as a rhinoplasty graft for the first time. Adopting an improved decellularization protocol, in which the ionic detergent was substituted by trypsin, the resulting decellularized graft was confirmed to preserve more structural components and better mechanics, and eliminate cellular components effectively. The in vitro and in vivo compatibility experiments demonstrated that the decellularized graft showed excellent biocompatibility and biosecurity. Additionally, the functionality assessment of rhinoplasty was performed in a rabbit model, and the condition of grafts after implantation was comprehensively evaluated. The optimized graft exhibited better capacity to reduce the degradation rate and maintain the morphology, in comparison to the decellularized costal cartilage prepared by conventional protocol. These findings indicate that this optimized graft derived from decellularized xenogeneic costal cartilage provides a new prospective for future investigations of rhinoplasty prosthesis and has great potential for clinical application.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1260
Author(s):  
Waiting Tai ◽  
Michael Yee Tak Chow ◽  
Rachel Yoon Kyung Chang ◽  
Patricia Tang ◽  
Igor Gonda ◽  
...  

The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo could be due to the inefficiency of the oral route in attaining high drug concentration in the lungs. Delivering hydroxychloroquine by inhalation may be a promising alternative for direct targeting with minimal systemic exposure. This paper reports on the characterisation of isotonic, pH-neutral hydroxychloroquine sulphate (HCQS) solutions for nebulisation for COVID-19. They can be prepared, sterilised, and nebulised for testing as an investigational new drug for treating this infection. The 20, 50, and 100 mg/mL HCQS solutions were stable for at least 15 days without refrigeration when stored in darkness. They were atomised from Aerogen Solo Ultra vibrating mesh nebulisers (1 mL of each of the three concentrations and, in addition, 1.5 mL of 100 mg/mL) to form droplets having a median volumetric diameter of 4.3–5.2 µm, with about 50–60% of the aerosol by volume < 5 µm. The aerosol droplet size decreased (from 4.95 to 4.34 µm) with increasing drug concentration (from 20 to 100 mg/mL). As the drug concentration and liquid volume increased, the nebulisation duration increased from 3 to 11 min. The emitted doses ranged from 9.1 to 75.9 mg, depending on the concentration and volume nebulised. The HCQS solutions appear suitable for preclinical and clinical studies for potential COVID-19 treatment.


Author(s):  
Catherine Karbasiafshar ◽  
Frank W. Sellke ◽  
M. Ruhul Abid

Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery, However, recent revolutionary developments and insight into the potential of 'personalizing' EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies, and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 600 ◽  
Author(s):  
Constanza Cárdenas ◽  
Fanny Guzmán ◽  
Marisela Carmona ◽  
Cristian Muñoz ◽  
Luis Nilo ◽  
...  

Viral infections in salmonids represent an ongoing challenge for the aquaculture industry. Two RNA viruses, the infectious pancreatic necrosis virus (IPNV) and the infectious salmon anemia virus (ISAV), have become a latent risk without healing therapies available for either. In this context, antiviral peptides emerge as effective and relatively safe therapeutic molecules. Based on in silico analysis of VP2 protein from IPNV and the RNA-dependent RNA polymerase from ISAV, a set of peptides was designed and were chemically synthesized to block selected key events in their corresponding infectivity processes. The peptides were tested in fish cell lines in vitro, and four were selected for decreasing the viral load: peptide GIM182 for IPNV, and peptides GIM535, GIM538 and GIM539 for ISAV. In vivo tests with the IPNV GIM 182 peptide were carried out using Salmo salar fish, showing a significant decrease of viral load, and proving the safety of the peptide for fish. The results indicate that the use of peptides as antiviral agents in disease control might be a viable alternative to explore in aquaculture.


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 188 ◽  
Author(s):  
Filip Vlavcheski ◽  
Mariah Young ◽  
Evangelia Tsiani

Insulin resistance, a pathological condition characterized by defects in insulin action leads to the development of Type 2 diabetes mellitus (T2DM), a disease which is currently on the rise that pose an enormous economic burden to healthcare systems worldwide. The current treatment and prevention strategies are considerably lacking in number and efficacy and therefore new targeted therapies and preventative strategies are urgently needed. Plant-derived chemicals such as metformin, derived from the French lilac, have been used to treat/manage insulin resistance and T2DM. Other plant-derived chemicals which are not yet discovered, may have superior properties to prevent and manage T2DM and thus research into this area is highly justifiable. Hydroxytyrosol is a phenolic phytochemical found in olive leaves and olive oil reported to have antioxidant, anti-inflammatory, anticancer and antidiabetic properties. The present review summarizes the current in vitro and in vivo studies examining the antidiabetic properties of hydroxytyrosol and investigating the mechanisms of its action.


Author(s):  
Sabiha Imran ◽  
Twinkle Gupta ◽  
Aarti Arora ◽  
Nilanjan Das

  Bacteriocins are ribosomally synthesized antimicrobial peptides produced by microbes owned by different eubacterial taxonomic branches. Most of them are small cationic membrane-active compounds that form pores in the targeted cells, disrupting membrane possibilities, and triggering cell fatality. The availability of small cationic peptides with antimicrobial activity is a protection strategy found not only in bacteria but also in plants and animals. The antibiotics which have extensive applications in the treatment of various bacterial diseases have developed alarming resistance against them in many pathogens due to improper use besides this antibiotics have adverse side effects also. There are an extensive variety of bacteriocins made by different bacterial genera have promising alternative to antibiotics that needs to be further studied to show the no existence of undesirable effects, which must be performed both in vitro and in vivo experimental systems. Most of the bacteriocin have narrow spectrum of their activity and effective only on the related species. There is an urgent need for the identification of broad-spectrum bacteriocins isolated from the species from different habitats that can be effective against both Gram-positive and Gram-negative pathogens. In this review, we focus on the main physical and chemical characteristics of broad-spectrum bacteriocin and discuss their application as an alternative option to antibiotics.


Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 1965-1971 ◽  
Author(s):  
R Landolfi ◽  
G Ciabattoni ◽  
P Patrignani ◽  
MA Castellana ◽  
E Pogliani ◽  
...  

Abstract Increased thromboxane (TX) production and modified aspirin sensitivity has been detected in vitro in platelets isolated from patients with polycythemia vera. To verify the relevance of these capacity-related measurements to the actual rate of TXA2 biosynthesis in vivo and its suppression by oral aspirin, we have investigated the urinary excretion of major enzymatic metabolites of TXB2 in 17 patients with polycythemia vera and 23 gender- and age-matched controls. Urinary 11-dehydro-TXB2 and 2,3-dinor-TXB2 were measured by previously validated radioimmunoassays. In addition, urinary immunoreactive leukotriene (LT) E4 was measured to explore the 5-lipoxygenase pathway of arachidonate metabolism. Polycythemic patients had significantly (P < .001) higher excretion rates of both 11-dehydro-TXB2 (1,033 +/- 1,050 v 117 +/- 45 pmol/mmol creatinine; mean +/- SD) and 2,3-dinor-TXB2 (725 +/- 676 v 82 +/- 43 pmol/mmol creatinine) than controls. In contrast, urinary LTE4 was not significantly different. Enhanced metabolite excretion did not correlate with the platelet count or with the hematocrit value, and was not related to the current treatment or to a clinical history of thrombotic complications. Platelet TX receptor studies did not show any significant changes in the binding characteristics of two different ligands. A platelet-selective regimen of aspirin therapy (50 mg/d for 7 to 14 days) was associated with greater than 80% suppression in metabolite excretion in nine patients. These results are consistent with abnormal stimuli operating in polycythemia vera to induce a selective enhancement in the platelet biosynthesis of TXA2 without changes in receptor binding. This in vivo abnormality in platelet biochemistry can be largely suppressed by low doses of aspirin.


Sign in / Sign up

Export Citation Format

Share Document