scholarly journals Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans

2020 ◽  
Vol 8 (4) ◽  
pp. 585 ◽  
Author(s):  
Ruei-Ching Chen ◽  
Chung-Yu Lan

Hepcidin 25 (hep 25) is a cysteine-rich 25-amino acid antimicrobial peptide containing the amino-terminal Cu(II)/Ni(II)-binding (ATCUN) motif. Upon metal binding, the ATCUN motif is known to be involved in the generation of reactive oxygen species (ROS), especially hydrogen peroxide and hydroxyl radicals, which act against different bacterial species. However, the antifungal activity and its correlation to the Cu(II)-ATCUN complex of Hep 25 are still poorly understood. Here, we found that ROS accumulation plays an important role in the fungicidal activity of hep 25 against Candida albicans. In addition, Annexin V-FITC staining and TUNEL assay results provide clues about the apoptosis induced by hep 25. Moreover, hep 25 also increases the generation of ROS, possibly because of copper binding to the ATCUN motif, which is relevant to its activity against C. albicans. Finally, the C. albicans killing action of hep 25 is an energy- and temperature-dependent process that does not involve targeting the membrane. Taken together, our results provide new insights into the mechanisms of hep 25 against C. albicans cells and the potential use of hep 25 and its derivatives as novel antifungal agents.

2020 ◽  
Author(s):  
Huiling Ma ◽  
Longbing Yang ◽  
Zhuqing Tian ◽  
Lijuan Zhu ◽  
JiangFan Xiu ◽  
...  

Abstract Background: New anti-candida albicans drugs need to be developed due to the emergence of drug-resistant cases in recent years. AMP-17 (Musca. domestica antimicrobial pepitide-17) is an antimicrobial peptide from M. domestica, which inhibits many fungal pathogens including Candida albicans (C. albicans) effectively. In this article, we discuss the potential mechanism of AMP-17 against C. albicans from the perspective of affecting its cell internal structure.Methods: After AMP-17 treatment, we examined the ultrastructure of C. albicans by transmission electron microscopy (TEM) and detected the cell cycle using flow cytometry. Fluorescent probes were used to examine the reactive oxygen species (ROS) accumulation in C. albicans cells and to analyze the correlation between ROS accumulation and C. albicans cell necrosis. The JC-1 kit was used to measure the effect of AMP-17 on the mitochondrial membrane potential (MMP) of C. albicans cells. AMP-17-induced apoptosis and necrosis was investigated using an Annexin V-FITC apoptosis detection kit.Results: Morphological observations showed that the shape of C. albicans treated with AMP-17 was irregular, and vacuoles were found in the cytoplasmic region. The treatment of C. albicans with AMP-17 resulted in the elevation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP), and changes in cell cycle, which promoted apoptosis and necrosis of C. albicans cells. The level of apoptosis increased in a dose-dependent manner after AMP-17 treatment.Conclusions: AMP-17 inhibited the growth and proliferation of C. albicans cells by altering the cell cycle of C. albicans. In addition, AMP-17 stimulated mitochondria to produce excess ROS for anti-stress, but the excess ROS damages the function of mitochondria in return and results in the alteration of MMP. All of these ultimately contributes to the death of C. albicans.


2019 ◽  
Vol 18 (10) ◽  
pp. 1448-1456 ◽  
Author(s):  
Bahareh Movafegh ◽  
Razieh Jalal ◽  
Zobeideh Mohammadi ◽  
Seyyede A. Aldaghi

Objective: Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell-penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. Methods: The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide- acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicininduced cell death. Results: Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24h combined treatment of cells with doxorubicin (0.5 µM) and poly-L-arginine (1 µg ml-1) caused a small increase in doxorubicin-induced apoptosis and significantly elevated necrosis in DU145 cells as compared to each agent alone. Conclusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferationinducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saba Sameri ◽  
Chiman Mohammadi ◽  
Mehrnaz Mehrabani ◽  
Rezvan Najafi

Abstract Background Silibinin, as a chemopreventive agent, has shown anti-cancer efficacy against different types of cancers. In the present study, we investigated the anti-cancer activities of silibinin on CT26 mouse colon cell line. Methods CT26 cells were treated with different concentrations of silibinin. To examine the cytotoxic effect of silibinin on proliferation, apoptosis, autophagy, angiogenesis, and migration, MTT, colony-forming assay, Annexin V/PI flow cytometry, RT-qPCR, and Scratch assay were used. Results Silibinin was found to significantly reduce CT26 cells survival. Furthermore, silibinin strongly induced apoptosis and autophagy by up-regulating the expression of Bax, Caspase-3, Atg5, Atg7 and BECN1 and down-regulating Bcl-2. Silibinin considerably down-regulated the expression of COX-2, HIF-1α, VEGF, Ang-2, and Ang-4 as well as the expression of MMP-2, MMP-9, CCR-2 and CXCR-4. Conclusions The present study revealed that silibinin shows anticancer activities by targeting proliferation, cell survival, angiogenesis, and migration of CT26 cells.


Author(s):  
Amber M. Tavener ◽  
Megan C. Phelps ◽  
Richard L. Daniels

AbstractGlioblastoma (GBM) is a lethal astrocyte-derived tumor that is currently treated with a multi-modal approach of surgical resection, radiotherapy, and temozolomide-based chemotherapy. Alternatives to current therapies are urgently needed as its prognosis remains poor. Anthracyclines are a class of compounds that show great potential as GBM chemotherapeutic agents and are widely used to treat solid tumors outside the central nervous system. Here we investigate the cytotoxic effects of doxorubicin and other anthracyclines on GL261 glioma tumor cells in anticipation of novel anthracycline-based CNS therapies. Three methods were used to quantify dose-dependent effects of anthracyclines on adherent GL261 tumor cells, a murine cell-based model of GBM. MTT assays quantified anthracycline effects on cell viability, comet assays examined doxorubicin genotoxicity, and flow cytometry with Annexin V/PI staining characterized doxorubicin-induced apoptosis and necrosis. Dose-dependent reductions in GL261 cell viability were found in cells treated with doxorubicin (EC50 = 4.9 μM), epirubicin (EC50 = 5.9 μM), and idarubicin (EC50 = 4.4 μM). Comet assays showed DNA damage following doxorubicin treatments, peaking at concentrations of 1.0 μM and declining after 25 μM. Lastly, flow cytometric analysis of doxorubicin-treated cells showed dose-dependent induction of apoptosis (EC50 = 5.2 μM). Together, these results characterized the cytotoxic effects of anthracyclines on GL261 glioma cells. We found dose-dependent apoptotic induction; however at high concentrations we find that cell death is likely necrotic. Our results support the continued exploration of anthracyclines as compounds with significant potential for improved GBM treatments.


Drug Research ◽  
2019 ◽  
Vol 69 (12) ◽  
pp. 665-670 ◽  
Author(s):  
Mohammad Jalili-Nik ◽  
Hamed Sabri ◽  
Ehsan Zamiri ◽  
Mohammad Soukhtanloo ◽  
Mostafa Karimi Roshan ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the fatal type of astrocytic tumors with a survival rate of 12 months. The present study, for the first time, evaluated the cytotoxic impacts of Ferula latisecta (F. latisecta) hydroalcoholic extract on U87 GBM cell line. The MTT assay measured the cellular toxicity following 24- and 48 h treatment with various doses of F. latisecta (0–800 μg/mL). Apoptosis was evaluated by an Annexin V/propidium iodide (PI) staining 24 h after treatment by F. latisecta. Moreover, to determine the cellular metastasis of U87 cells, we used a gelatin zymography assay (matrix metalloproteinase [MMP]-2/-9 enzymatic activity). The outcomes showed that F. latisecta mitigated the viability of U87 cells in a concentration- and time-dependent manner with IC50 values of 145.3 and 192.3 μg/mL obtained for 24- and 48 h treatments, respectively. F. latisecta induced apoptosis in a concentration-dependent manner after 24 h. Also, MMP-9 activity was significantly decreased following 24 h after treatment concentration-dependently with no change in MMP-2 enzymatic activity. This study showed that F. latisecta induced cytotoxicity and apoptosis, and mitigated metastasis of U87 GBM cells. Hence, F. latisecta could be beneficial as a promising natural herb against GBM after further studies.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128693 ◽  
Author(s):  
Ying Li ◽  
Wenqiang Chang ◽  
Ming Zhang ◽  
Xiaobin Li ◽  
Yang Jiao ◽  
...  

2013 ◽  
Vol 454 (1) ◽  
pp. 147-156 ◽  
Author(s):  
Nataliya V. Dolgova ◽  
Sergiy Nokhrin ◽  
Corey H. Yu ◽  
Graham N. George ◽  
Oleg Y. Dmitriev

Human copper transporters ATP7B (Wilson's disease protein) and ATP7A (Menkes' disease protein) have been implicated in tumour resistance to cisplatin, a widely used anticancer drug. Cisplatin binds to the copper-binding sites in the N-terminal domain of ATP7B, and this binding may be an essential step of cisplatin detoxification involving copper ATPases. In the present study, we demonstrate that cisplatin and a related platinum drug carboplatin produce the same adduct following reaction with MBD2 [metal-binding domain (repeat) 2], where platinum is bound to the side chains of the cysteine residues in the CxxC copper-binding motif. This suggests the same mechanism for detoxification of both drugs by ATP7B. Platinum can also be transferred to MBD2 from copper chaperone Atox1, which was shown previously to bind cisplatin. Binding of the free cisplatin and reaction with the cisplatin-loaded Atox1 produce the same protein-bound platinum intermediate. Transfer of platinum along the copper-transport pathways in the cell may serve as a mechanism of drug delivery to its target in the cell nucleus, and explain tumour-cell resistance to cisplatin associated with the overexpression of copper transporters ATP7B and ATP7A.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Liviana Ricci ◽  
Joanna Mackie ◽  
Megan D. Lenardon ◽  
Caitlin Jukes ◽  
Ahmed N. Hegazy ◽  
...  

The human gut microbiota enhances the host’s resistance to enteric pathogens via colonisation resistance, a phenomenon that is driven by multiple mechanisms, such as production of antimicrobial metabolites and activation of host immune responses. However, there is limited information on how individual gut bacterial species, particularly many of the dominant anaerobes, might impact the host’s defence. This study investigated the potential of specific human gut isolates to bolster the host’s resistance to infection. First, by antagonising the opportunistic fungal pathogen Candida albicans, and secondly, by modulating the killing capacity of human-isolated macrophages in vitro. Co-culturing C. albicans with faecal microbiota from different healthy individuals revealed varying levels of fungal inhibition. In vitro assays with a panel of representative human gut anaerobes confirmed that culture supernatants from certain bacterial isolates, in particular of Bifidobacterium adolescentis, significantly inhibited C. albicans growth. Mechanistic studies revealed that microbial fermentation acids including acetate and lactate, in combination with the associated decrease in pH, were strong drivers of this inhibitory activity. In the second in vitro assay, human-isolated macrophages were exposed to bacterial supernatants, and subsequently tested for their capacity to eliminate adherent-invasive Escherichia coli. Among the gut anaerobes tested, B. adolescentis was revealed to exert the strongest immunostimulatory and killing effect when compared to the unstimulated macrophages control. B. adolescentis is known to be stimulated by dietary consumption of resistant starch andmay therefore represent an attractive target for the development of probiotic and prebiotic interventions tailored to enhancethe host’s natural defences against infection.


Sign in / Sign up

Export Citation Format

Share Document