scholarly journals Anthracycline-induced cytotoxicity in the GL261 glioma model system

Author(s):  
Amber M. Tavener ◽  
Megan C. Phelps ◽  
Richard L. Daniels

AbstractGlioblastoma (GBM) is a lethal astrocyte-derived tumor that is currently treated with a multi-modal approach of surgical resection, radiotherapy, and temozolomide-based chemotherapy. Alternatives to current therapies are urgently needed as its prognosis remains poor. Anthracyclines are a class of compounds that show great potential as GBM chemotherapeutic agents and are widely used to treat solid tumors outside the central nervous system. Here we investigate the cytotoxic effects of doxorubicin and other anthracyclines on GL261 glioma tumor cells in anticipation of novel anthracycline-based CNS therapies. Three methods were used to quantify dose-dependent effects of anthracyclines on adherent GL261 tumor cells, a murine cell-based model of GBM. MTT assays quantified anthracycline effects on cell viability, comet assays examined doxorubicin genotoxicity, and flow cytometry with Annexin V/PI staining characterized doxorubicin-induced apoptosis and necrosis. Dose-dependent reductions in GL261 cell viability were found in cells treated with doxorubicin (EC50 = 4.9 μM), epirubicin (EC50 = 5.9 μM), and idarubicin (EC50 = 4.4 μM). Comet assays showed DNA damage following doxorubicin treatments, peaking at concentrations of 1.0 μM and declining after 25 μM. Lastly, flow cytometric analysis of doxorubicin-treated cells showed dose-dependent induction of apoptosis (EC50 = 5.2 μM). Together, these results characterized the cytotoxic effects of anthracyclines on GL261 glioma cells. We found dose-dependent apoptotic induction; however at high concentrations we find that cell death is likely necrotic. Our results support the continued exploration of anthracyclines as compounds with significant potential for improved GBM treatments.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2800-2800
Author(s):  
Ingo Ringshausen ◽  
Kathrin Weick ◽  
Madlene Oelsner ◽  
Christian Peschel ◽  
Thomas Decker

Abstract Purpose: We have previously shown that PKC delta is constitutively activated in B-CLL cells. In the present study, we have analyzed the mechanism of apotosis induction as well as the effets of PKC delta in the presence of survival signal and chemotherapeutic agents. Methods: The mitochondrial membrane potential, presence of active caspase 3, conformational status of Bax and apoptosis assays (Annexin V stain, Tunel assay) were performed using flow cytometric analysis. Expression of BCL-2 family proteins and XIAP as well as processing of caspase 8 and 9 was revealed in western blot experiments. Results: Rottlerin at 5μM (which is not toxic for normal lymphocytes) induced apoptosis in a large amount of B-CLL samples. Rottlerin was equally effective in zap70 positive- and negative samples. Rottlerin induced apoptosis was in part caspase dependent and involved processing of caspase 3, 8 and 9. Expression of antiapoptotic proteins MCL-1 and XIAP was reduced in Rottlerin treated cells and BAX expression increased and Bax conformation changed to its proapoptotic form.IN contrast, expression of bcl-2 was not changed. B-CL cells are likely to receive survival signals from the microenvironment and might be rescued from cell death induced by chemotherapeutic agents. Rottlerin was very effective in inhibiting survival signals like IL-4 or stromal cell contact. In addition, treatment with Rottlerin enhanced the cytotoxicity of the chemotherapeutic agents Fludarabine, Vncristine and Daunorubicine. Conclusion: Inhibition of PKC delta might be a powerful treatment option for B-CLL given its potential to induce apoptosis, inhibit antiapoptotic survival signals and augment the cytotoxicity of chemotherapeutic agents.


2020 ◽  
Vol 27 (13) ◽  
pp. 2118-2132 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Hakan Ozben ◽  
Ferhat Hanikoglu ◽  
Tomris Ozben

: Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


OTO Open ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 2473974X2110092
Author(s):  
Jivianne T. Lee ◽  
Saroj Basak

Although the etiology of chronic rhinosinusitis remains unknown, environmental factors including airborne pollutants and toxicants are postulated to contribute to its pathogenesis. However, the precise pathomechanisms with which environmental toxicants may contribute to chronic rhinosinusitis are not fully understood. The purpose of this pilot study is to examine the cytotoxic effects of N,N-diethyl- meta-toluamide (DEET), a commonly used pesticide, on sinonasal epithelial cells (SNECs). Sinus mucosa was obtained from 3 subjects without a history of chronic rhinosinusitis. Cultured SNECs were exposed to various concentrations of DEET (0-5 mM) for 6 days. Cell viability, proliferation, and morphologic changes were assessed using the MTT colorimetric dye assay and the Incucyte Live Cell Monitoring System. Statistically significant dose-dependent reduction in cell viability and proliferation was observed between exposure and control groups ( P < .05) at all concentrations tested. Dose-dependent cellular morphological changes were also seen. These findings indicate that DEET exposure induces dose-dependent cytotoxicity in sinonasal epithelia.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Guangyang Weng ◽  
Yingjian Zeng ◽  
Jingya Huang ◽  
Jiaxin Fan ◽  
Kunyuan Guo

Leukemia relapse and nonrecurrence mortality (NRM) due to leukemia stem cells (LSCs) represent major problems following hematopoietic stem cell transplantation (HSCT). To eliminate LSCs, the sensitivity of LSCs to chemotherapeutic agents used in conditioning regimens should be enhanced. Curcumin (CUR) has received considerable attention as a result of its anticancer activity in leukemia and solid tumors. In this study, we investigated the cytotoxic effects and underlying mechanisms in leukemia stem-like KG1a cells exposed to busulfan (BUS) and CUR, either alone or in combination. KG1a cells exhibiting BUS-resistance demonstrated by MTT and annexin V/propidium iodide (PI) assays, compared with HL-60 cells. CUR induced cell growth inhibition and apoptosis in KG1a cells. Apoptosis of KG1a cells was significantly enhanced by treatment with CUR+BUS, compared with either agent alone. CUR synergistically enhanced the cytotoxic effect of BUS. Seven apoptosis-related proteins were modulated in CUR- and CUR+BUS-treated cells analyzed by proteins array analysis. Importantly, the antiapoptosis protein survivin was significantly downregulated, especially in combination group. Suppression of survivin with specific inhibitor YM155 significantly increased the susceptibility of KG1a cells to BUS. These results demonstrated that CUR could increase the sensitivity of leukemia stem-like KG1a cells to BUS by downregulating the expression of survivin.


1988 ◽  
Vol 90 (4) ◽  
pp. 707-716
Author(s):  
J.R. Nilsson

A study was made of the effects of cisplatin, cis-dichlorodiammineplatinum(II) (5–250 mg l-1), on the physiology and fine structure of Tetrahymena. The physiological effects observed were dose-dependent. Endocytosis was inhibited reversibly in all, but late in the high, concentrations. After an initial dose-related increase, due to division of cells most advanced in the cell cycle, proliferation ceased for at least two normal cell generations (6 h) in 50 and 100 mg drug l-1, but for 24 h in 250 mg l-1, after which multiplication was resumed in a dose-dependent manner. Exposure to cisplatin resulted in the appearance of small, refractive granules and platinum (i.e. electron-dense material) accumulated in these granules. Fine structural observations of cells exposed to 250 mg drug l-1 showed nucleolar fusion and appearance initially of lipid droplets, dense granules and autophagosomes. A time-dependent redistribution of cell organelles was revealed by morphometry; in particular, the mitochondria increased in number, but decreased in size. Moreover, after prolonged treatment (24 h) and without cell division, the inner mitochondrial membrane had diminished and the ratio of the inner to the outer mitochondrial membrane was only half of the value for control mitochondria. Concomitantly with this decrease, the cell content of ATP was reduced to a similar extent. The findings indicate a specific action of cisplatin on mitochondria, resembling that induced in Tetrahymena by chloramphenicol and methotrexate.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800
Author(s):  
Jung-Taek Kwon ◽  
Mimi Lee ◽  
Gun-Baek Seo ◽  
Hyun-Mi Kim ◽  
Ilseob Shim ◽  
...  

This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.


Author(s):  
Guoyong Jia ◽  
Hongna Yang ◽  
Zengyan Diao ◽  
Ying Liu ◽  
Congcong Sun

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that protein isoaspartate methyltransferase 1 (PCMT1) is highly expressed in brain tissue (substantia nigra, blue plaque, paraventricular nucleus). In this study, we investigated the effect of neural stem cell conditioned medium alleviates Aβ25-35 damage to SH-SY5Y cells by PCMT1/MST1 pathway. Results demonstrated that Aβ25-35 significantly decreased the cell viability in time and dose dependent manner. However, Neural stem cell-complete medium (NSC-CPM) or NSC-CDM had inhibitory effect on toxicity when fibrillation of Aβ25-35 occurred in their presence and NSC-CDM had a better inhibitor result. An increase of the PCMT1 expression levels was found in Aβ25-35 + NSC-CDM group. sh-PCMT1 significantly reduced the PCMT1, the cell viability and inhibited the protective effect; induced apoptosis and increased the expression of p-MST1. Overexpression of PCMT1 group reversed the effect of Aβ25-35 inhibited the cell viability and Aβ25-35 induced the apoptosis. In conclusion, NSC-CDM corrects the damage of Aβ25-35 to cells by increasing PCMT1, reducing MST phosphorylation.


2020 ◽  
Vol 20 (2) ◽  
pp. 157-166
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Stearic acid (SA), a saturated long-chain fatty acid consisting of 18 carbon atoms, is widely found in feed ingredients, such as corn, soybeans, and wheat. However, the roles of SA in the renewal of intestinal epithelial cells remain unclear. Methods and Results: In the present study, we found that 0.01-0.1 mM SA promoted IPEC-J2 cell differentiation and did not affect IPEC-J2 cell viability. In addition, the results showed that the viability of IPEC-J2 cells was inhibited by SA in a time- and dose-dependent manner at high concentrations. Flow cytometry and western blot analysis suggested that SA induced apoptosis, autophagy and ER stress in cells. In addition, the amounts of triglyceride were significantly increased upon challenge with SA. Moreover, the decrease in the viability of cells induced by SA could be attenuated by 4-PBA, an inhibitor of ER stress. Conclusion: In summary, SA accelerated IPEC-J2 cell differentiation at 0.01-0.1 mM. Furthermore, SA induced IPEC-J2 cell apoptosis and autophagy by causing ER stress.


Sign in / Sign up

Export Citation Format

Share Document