Cytotoxic Effects of Ferula Latisecta on Human Glioma U87 Cells

Drug Research ◽  
2019 ◽  
Vol 69 (12) ◽  
pp. 665-670 ◽  
Author(s):  
Mohammad Jalili-Nik ◽  
Hamed Sabri ◽  
Ehsan Zamiri ◽  
Mohammad Soukhtanloo ◽  
Mostafa Karimi Roshan ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the fatal type of astrocytic tumors with a survival rate of 12 months. The present study, for the first time, evaluated the cytotoxic impacts of Ferula latisecta (F. latisecta) hydroalcoholic extract on U87 GBM cell line. The MTT assay measured the cellular toxicity following 24- and 48 h treatment with various doses of F. latisecta (0–800 μg/mL). Apoptosis was evaluated by an Annexin V/propidium iodide (PI) staining 24 h after treatment by F. latisecta. Moreover, to determine the cellular metastasis of U87 cells, we used a gelatin zymography assay (matrix metalloproteinase [MMP]-2/-9 enzymatic activity). The outcomes showed that F. latisecta mitigated the viability of U87 cells in a concentration- and time-dependent manner with IC50 values of 145.3 and 192.3 μg/mL obtained for 24- and 48 h treatments, respectively. F. latisecta induced apoptosis in a concentration-dependent manner after 24 h. Also, MMP-9 activity was significantly decreased following 24 h after treatment concentration-dependently with no change in MMP-2 enzymatic activity. This study showed that F. latisecta induced cytotoxicity and apoptosis, and mitigated metastasis of U87 GBM cells. Hence, F. latisecta could be beneficial as a promising natural herb against GBM after further studies.

2015 ◽  
Vol 34 (11) ◽  
pp. 1096-1105
Author(s):  
H-H Cheng ◽  
C-T Chou ◽  
T-K Sun ◽  
W-Z Liang ◽  
J-S Cheng ◽  
...  

Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca2+) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca2+]i and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca2+]i rises in a concentration-dependent manner. This Ca2+ signal was reduced partly when extracellular Ca2+ was removed. The Ca2+ signal was inhibited by a Ca2+ channel blocker nifedipine but not by store-operated Ca2+ channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca2+-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pumps, partly inhibited naproxen-induced Ca2+ signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca2+]i rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca2+ with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca2+]i rises by inducing Ca2+ release from multiple stores that included the endoplasmic reticulum and Ca2+ entry via nifedipine-sensitive Ca2+ channels. Naproxen induced cell death that involved apoptosis.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4370 ◽  
Author(s):  
Bo-Ram Kim ◽  
Sunil Paudel ◽  
Joo-Won Nam ◽  
Chang Jin ◽  
Ik-Soo Lee ◽  
...  

A new polyacetylene glycoside, (5R)-6E-tetradecene-8,10,12-triyne-1-ol-5-O-β-glucoside (1), was isolated from the flower of Coreopsis lanceolata (Compositae), together with two known compounds, bidenoside C (10) and (3S,4S)-5E-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-glucopyranoside (11), which were found in Coreopsis species for the first time. The other known compounds, lanceoletin (2), 3,2′-dihydroxy-4-3′-dimethoxychalcone-4′-glucoside (3), 4-methoxylanceoletin (4), lanceolin (5), leptosidin (6), (2R)-8-methoxybutin (7), luteolin (8) and quercetin (9), were isolated in this study and reported previously from this plant. The structure of 1 was elucidated by analyzing one-dimensional and two-dimensional nuclear magnetic resonance and high resolution-electrospray ionization-mass spectrometry data. All compounds were tested for their dipeptidyl peptidase IV (DPP-IV) inhibitory activity and compounds 2–4, 6 and 7 inhibited DPP-IV activity in a concentration-dependent manner, with IC50 values from 9.6 to 64.9 μM. These results suggest that C. lanceolata flower and its active constituents show potential as therapeutic agents for diseases associated with type 2 diabetes mellitus.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4478-4478
Author(s):  
Julia Mazar ◽  
Alexandra Lichtenstein ◽  
Leora Katz ◽  
Ofer Shpilberg ◽  
Itai Levi ◽  
...  

Abstract Many types of antitumor therapy in general and AML in particular exert their effect by activating apoptosis. Apoptosis of AML cells can be induced by cytostatic drugs, corticosteroids, and radiation. Recently, the role of different proteases as possible targets for chemotherapy was described. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), a chymotrypsin-like protease (CLP) inhibitor was shown to exert a dual effect on leukemic cells: proapoptotic and antiapoptotic. In the present study the mechanism of its proapoptotic effect was addressed. It was found that the CLP inhibitors, TPCK and 3,4 dichloroisicoumarine induced apoptosis in a time- and concentration-dependent manner. Apoptosis was accompanied by a decrease in mitochondrial membrane potential, cytochrome c release, caspase-3 (but not caspase-8) activation, PS flip-flop (measured by Annexin-V staining followed by flow cytometry analysis) and chromatin condensation, but not fragmentation (detected by acridine orange/ethidium bromide staining). All apoptotic processes induced by TPCK were completely inhibited by cycloheximide. The ability of cycloheximide to inhibit TPCK-induced cell death suggests that protein synthesis plays a role in TPCK-induced apoptosis. Additionaly, the proapoptotic effect of TPCK was abolished by elimination of glucose from the medium. The data supports the role of mitochondria in this process. In the present study the apoptotic pathway driven by inhibition of CLP was demonstrated. Moreover, these findings suggest possible ways of preventing the proapoptotic activity of TPCK and thereby enhancimg its antiapoptotic action.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2981-2981
Author(s):  
Chris Pepper ◽  
Chris Fegan ◽  
Paul Brennan ◽  
Ken Mills ◽  
Alan K. Burnett

Abstract Chronic lymphocytic leukemia (CLL) has a variable clinical course but once treatment is required the development of drug resistance often ensues. Therefore, delineation of the biological mechanisms of drug resistance and the development of novel therapies designed to overcome this is an important goal of research into this condition. We have recently shown that the transcription factor NF-κB plays a central role in regulating CLL cell survival and this is mediated, at least in part, through the transactivation of a number of anti-apoptotic genes including Bcl-2. In this pre-clinical study we evaluated the cytotoxic effects of the novel parthenolide analog, LC-1 (Leuchemix Inc.), in primary tumor cells derived from 49 CLL patients (20 treated, 29 untreated). LC-1 induced apoptosis, as assessed by the Annexin V assay, in a concentration-dependent manner (0.1 – 10 μM) in all the CLL samples tested with a mean LD50 value (the concentration of drug required to kill 50% of the cells) of 2.9 μM. The induction of apoptosis was preceded by a marked loss of NF-κB activity, as evidenced by electrophoretic mobility shift assay, and a down regulation in Bcl-2 protein expression. Caspase-3 activation was a consistent feature of LC-1-induced apoptosis pointing to the involvement of the intrinsic apoptotic pathway. Importantly, CD38+ samples (> 30% expression) and those derived from patients with unmutated VH genes were more sensitive to LC-1 (LD50 values = 2.3 μM versus 3.4 μM and 2.4 μM versus 3.2 μM; P = 0.0003 and 0.01 respectively) suggesting that these CLL cells have a disproportionate reliance on NF-κB activity to maintain their survival and proliferative advantage. Taken together our data clearly demonstrates that LC-1 preferentially targets CLL cells from poor prognostic subsets. This unique cytotoxicity profile warrants further investigation and supports the use of this agent in early clinical trials for patients with CLL.


Author(s):  
Ying Wang ◽  
Longzhu Li ◽  
Tao Ma ◽  
Xiu Cheng ◽  
Dachuan Liu

Background: Chalcones are precursors of flavonoids or isoflavonoids, and they are abundant in edible plants. Chalcones constitute an important group of natural and synthetic products with a wide range of pharmacological activities. Objective: To determine the seeds of the anti-tumor agents, we focused on the potential bioactive materials obtained from chalcone derivatives. Method: Two series of chalcone derivatives containing aminoguanidine or bis-chalone were designed, synthesized, and screened for their cytotoxicity, proliferation inhibition, and apoptosis-promoting activity in vitro against a panel of human tumor cell lines. Result: Among the various compounds studied in this work, 2-((E)-4-((E)-3-oxo-3-(p-tolyl)prop-1-en-1-yl)benzylidene)hydrazine-1-carboximidamide (5f) was the most potent, with IC50 values of 7.17 μM and 3.05 μM anti-proliferative activity in vitro against human hepatocarcinoma HepG2 cells and SMMC-7721 cells, respectively. This result showed that the compound possessed a certain degree of selectivity for human hepatocarcinoma cells, especially for SMMC-7721. Then, Annexin V/PI flow cytometry assay was used to investigate different concentrations of compound 5f to demonstrate the ability of compound 5f in inducing apoptosis of SMMC-7721 cells in a concentration-dependent manner. Finally, these results were further verified by Western blot analysis. Conclusion: Based on the collective results, compound 5f may be a promising anti-cancer compound, and may play a significant role in subsequent research.


Pharmacology ◽  
2018 ◽  
Vol 102 (3-4) ◽  
pp. 126-132 ◽  
Author(s):  
Jian Chen ◽  
Jian Sun ◽  
Julian Jiang ◽  
Jie Zhou

Cyanidin is an anthocyanidin extracted from a variety of fruits and vegetables. Cyanidin showed benefits against diabetes, cancer, and atherosclerosis. However, the potential neuroprotective effects of cyanidin against Parkinson’s disease (PD) have not been examined. Indicated concentrations of cyanidin (1, 3, 10, and 30 μmol/L) were incubated together with 0.5 mmol/L 1-methyl-4-phenylpyridinium (MPP+) to human neuroblastoma SH-SY5Y cells. We found cyanidin prevented MPP+-induced cell demise in a concentration-dependent manner. Cyanidin significantly reduced MPP+-induced apoptosis, this is reflected by decreased TdT-mediated dUTP nick-end labeling staining and caspase-3 expressions. Further, MPP+ increased the Bax/Bcl-2 ratio, which was partly reversed by cyanidin. We also found cyanidin attenuated the MPP+-induced mitochondrial oxidative stress as revealed by decreased MitoSOX staining. Taken together, these data for the first time indicated the ­neuroprotective effects of cyanidin against MPP+-induced ­SH-SY5Y cell death. These findings shed light on the potential implications of cyanidin for PD treatment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 870-870
Author(s):  
Kensuke Kojima ◽  
Steven M. Kornblau ◽  
Vivian Ruvolo ◽  
Seshagiri Duvvuri ◽  
Richard E Davis ◽  
...  

Abstract Abstract 870 p53 is a transcription factor that prevents abnormal cell growth. Cellular levels of p53 are critically regulated by MDM2, which is frequently over-expressed in AML. Nutlin-3a disrupts MDM2-p53 interaction, increases cellular levels of p53 in both nucleus and cytoplasm, and activates p53 signaling in cells. p53 status is the major determinant of response to MDM2 inhibitors. p53 is shuttled between the nucleus and the cytoplasm, and CRM1 mediates its nuclear export. Karyopharm Therapeutics has developed novel, potent and irreversible small molecule selective inhibitors of CRM1. We hypothesized that CRM1 inhibition would enhance the nuclear activity of p53, thereby enhancing p53-mediated transcription-dependent apoptotic signaling in AML. We measured CRM1 expression in primary AML samples and investigated if blockade of nuclear export of p53 by CRM1 inhibition would enhance MDM2 inhibitor-induced apoptosis in AML. CRM1 expression was investigated in 511 patient AML samples using a validated robust reverse-phase protein array. Higher levels of CRM1 were associated with higher marrow and peripheral blast percentages (P < 0.00001). Expression was lower in those with favorable cytogenetics compared to those with intermediate or unfavorable cytogenetics (P = 0.029). CRM1 levels were higher in patients with FLT3 mutations (P = 0.003). In 3-way correlation (using distance weighted least squares), there was a clear interaction with p53 levels being highest when CRM1 was high and MDM2 levels were low. Overall survival progressively worsened as CRM1 levels increased, with median survival of 66 weeks for those with CRM1 expression in the lowest third, 47 weeks for middle third and 37 weeks in the highest third (P = 0.007). CRM1 levels did not affect remission duration (P = 0.33). The CRM1 inhibitor KPT-185 exhibited dose-dependent anti-proliferative and cytotoxic activity in AML cell lines, as evidenced by low IC50 values and high Annexin V positivity (= low ED50 values). IC50 values for wild-type p53 cells ranged from 27 to 38 nM, and for mutant p53 cells from 48 to 112 nM, suggesting that KPT-185 potently inhibits AML cell growth largely independent of p53. In contrast, apoptosis induction by KPT-185 was much more prominent in p53 wild-type than in p53-defective cells: ED50 values for Annexin V induction were 150, 90 and 85 nM in p53 wild-type and > 1000 nM in 5 of 6 p53 mutant cell lines. Stable p53 knockdown (> 90% efficiency) rendered AML cells resistant to KPT-induced apoptosis. KPT-185 induced p53 target genes TP53I3, GDF15, MDM2 and ZMAT3 partially in a p53-dependent manner. Hence, p53 was identified as major determinant of CRM1 inhibition-induced apoptosis in AML. MDM2-inhibitor Nutlin-3a induced p53 in both nucleus and cytoplasm, while CRM1 inhibition accumulated p53 in the nucleus. Treatment with KPT-185 or Nutlin-3a caused time-dependent increase in cellular p53 levels. The KPT-185/Nutlin-3a combination induced p53 more efficiently than the individual agents by accumulating p53 exclusively in the nucleus, and synergistically induced apoptosis and cell death. p53 knockdown abrogated these synergistic effects. In primary AML cells, both KPT-185 (24.7 – 36.7% Annexin V) and Nutlin-3a (13.6 – 59.8%) induced apoptosis in a dose-dependent manner. Importantly, both KPT-185 and Nutlin-3a induced apoptosis in CD34+CD38- progenitor cell populations as effectively as they did in bulk AML cells, suggesting high sensitivity of CD34+CD38- cells to CRM1 inhibition and MDM2 inhibition. KPT-185 and Nutlin-3a synergized in the induction of apoptosis in both bulk and CD34+CD38- AML progenitor cells: combination index (CI) values were 0.26 (bulk) and 0.30 (CD34+CD38-) for ED50 and 0.93 (bulk) and 0.46 (CD34+CD38-) for ED75, indicating highly synergistic (CI < 1) efficacy in apoptosis induction. The relation between p53 status and sensitivity to Nutlin-induced apoptosis has been well established. Nutlin-resistant samples were much less sensitive to KPT-185 than Nutlin-sensitive cases (12.2 ± 0.06 % versus 30.9 ± 0.04 % Annexin V, P < 0.05). Synergistic induction of apoptosis was not observed in normal cord blood CD34+CD38- cells. Collectively, CRM1 inhibition offers a novel therapeutic strategy for AML that mostly retains wild-type p53. We propose to develop novel combinatorial approaches for the therapy of AML, aimed at maximal activation of p53 and apoptosis signaling by concomitant MDM2 and CRM1 inhibition. Disclosures: Shacham: Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics: Employment. Andreeff:Hoffmann-La Roche: Research Funding; Karyopharm Therapeutics: Unrestricted gift, Unrestricted gift Other.


2019 ◽  
Vol 97 (6) ◽  
pp. 581-588 ◽  
Author(s):  
Danielle Jacques ◽  
Chantale Provost ◽  
Alexandre Normand ◽  
Nadia Abou Abdallah ◽  
Johny Al-Khoury ◽  
...  

Endocardial endothelial cells (EECs) form a monolayer lining the ventricular cavities. Studies from our laboratory and the literature have shown differences between EECs isolated from the right and left ventricles (EECRs and EECLs, respectively). Angiotensin II (Ang II) was shown to induce apoptosis of different cell types mainly via AT1 receptor activation. In this study, we verified whether Ang II induces apoptosis of human EECRs and EECLs (hEECRs and hEECLs, respectively) and via which type of receptor. Using the annexin V labeling and in situ TUNEL assays, our results showed that Ang II induced apoptosis of both hEECRs and hEECLs in a concentration-dependent manner. Our results using specific AT1 and AT2 receptor antagonists showed that the Ang-II-induced apoptosis in both hEECRs and hEECLs is mediated mainly via the AT2 receptor. However, AT1 receptor blockade partially prevented Ang-II-induced apoptosis, particularly in hEECRs. Hence, our results suggest that mainly AT2 receptors mediate Ang-II-induced apoptosis of hEECRs and hEECLs. The damage of EECs would affect their function as a physical barrier between the blood and cardiomyocytes, thus affecting cardiomyocyte functions.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2019 ◽  
Vol 18 (10) ◽  
pp. 1448-1456 ◽  
Author(s):  
Bahareh Movafegh ◽  
Razieh Jalal ◽  
Zobeideh Mohammadi ◽  
Seyyede A. Aldaghi

Objective: Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell-penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. Methods: The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide- acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicininduced cell death. Results: Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24h combined treatment of cells with doxorubicin (0.5 µM) and poly-L-arginine (1 µg ml-1) caused a small increase in doxorubicin-induced apoptosis and significantly elevated necrosis in DU145 cells as compared to each agent alone. Conclusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferationinducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis.


Sign in / Sign up

Export Citation Format

Share Document