scholarly journals Identification and Isolation Pattern of Globisporangium spp. from a Sanionia Moss Colony in Ny-Ålesund, Spitsbergen Is., Norway from 2006 to 2018

2021 ◽  
Vol 9 (9) ◽  
pp. 1912
Author(s):  
Motoaki Tojo ◽  
Natsumi Fujii ◽  
Hironori Yagi ◽  
Yuki Yamashita ◽  
Katsuyuki Tokura ◽  
...  

Globisporangium spp. are soil-inhabiting oomycetes distributed worldwide, including in polar regions. Some species of the genus are known as important plant pathogens. This study aimed to clarify the species construction of Globisporangium spp. and their long-term isolation pattern in Sanionia moss in Ny-Ålesund, Spitsbergen Is., Norway. Globisporangium spp. were isolated at two-year intervals between 2006 and 2018 at a Sanionia moss colony, Ny-Ålesund, Spitsbergen Is., Norway. The isolates were obtained by using three agar media and were identified based on sequences of the rDNA-ITS region and cultural characteristics. Most of the Globisporangium isolates obtained during the survey were identified into six species. All six species were grown at 0 °C on an agar plate and used to infect Sanionia moss at 4 and/or 10 °C under an in vitro inoculation test. The total isolation frequency of Globisporangium gradually decreased throughout the survey period. The isolation frequency varied among the six species, and four of the species that showed a high frequency in 2006 were rarely isolated after 2016. The results suggested that Globisporangium inhabiting Sanionia moss in Ny-Ålesund has a unique composition of species and that most of the species reduced their population over the recent decade.

Author(s):  
Jaygendra Kumar ◽  
Mukesh Kumar ◽  
Akash Tomar ◽  
. Vaishali ◽  
Pushpendra Kumar ◽  
...  

Trichoderma species are well known for their biocontrol activity which colonize many soil and tuber-borne and foliage plant pathogens. In this study, 12 native isolates of Trichiderma spp were collected from various crop rhizosphere soil samples and characterized them phenotypically based on morphological and cultural features and genotypically based on sequence analysis of internal transcribed spacer (ITS) region-PCR amplification. The results obtained from phenotypic and genotypic observation revealed that isolates were belonged to five different species namely T. asperellum, T. harzianum, T. longibrachiatum, T. koningii and T. koningiopsis. All Trichoderma isolates produced ~600 bp amplicon and phylogenetic analysis revealed that all isolates were grouped with respective species. Further, the antagonistic potential of all the isolates was evaluated against Fusarium spp. following in vitro dual culture method. The results showed that isolates of T. harzianum exhibited maximum growth inhibition activity. The highest rate of inhibition was recorded with T. harzianum isolate TBT6 (87.1%) followed by TBT7 (82.2%), while the least inhibition was observed in T. longibrachiatum isolate TBT10 (59.7%) after 7 days of incubation. The antagonistic T. harzianum isolate TBT6 can be used for development of Trichoderma based bio-formulation and served as bio-control agent against Fusaium spp. under field conditions.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1155-1155 ◽  
Author(s):  
T. Tsukiboshi ◽  
K. Sugawara ◽  
A. Masunaka

Corn (Zea mays L.) is the most important forage crop in Japan. It was cultivated on 92,000 ha in 2011 and was mainly used as whole crop silage for cattle feed. In September 2009, a root and stalk rot disease was detected on corn plants cultivated in Tochigi, located in the central region of Japan. The symptoms of the disease included wilting of whole plants after the R5 (dent) stage (2) with drooping ears. Roots turned black and their number decreased. Further, the stalks became hollow and soft and harbored white hyphae. This tissue deterioration made machine harvest difficult. We obtained seven isolates of a Pythium-like organism by single hypha isolation from surface-sterilized pieces of diseased roots and stems on water agar and deposited one of the isolates at the NIAS genebank, Japan, under the accession no. MAFF511547. The isolate was grown in the dark on V8 juice agar medium for 10 days to produce oogonia. The oogonia were globose, light brown to yellow, smooth, 23.9 to 30.5 μm in size, and had 1 to 8 antheridia. Oospores were mostly plerotic, and oogonia walls were 1.3 to 2.7 μm thick. The morphology of the isolates was similar to that of Pythium arrhenomanes Drechsler and consistent with the species description (3). We analyzed the rDNA-ITS region sequences of the isolate as described by Kageyama et al. (1). The sequence (GenBank Accession No. AB903904) showed 99.1% (783/790 bp) similarity with that of P. arrhenomanes (AY598628). On the basis of morphological and rDNA sequence similarities, we identified the isolates obtained from corn as P. arrhenomanes. The pathogenicity of the isolate was confirmed by planting corn seedlings of the commercial Pioneer Brand hybrid 36B08 immediately after germination in five replicate pots containing soil mixed with 5% boiled barley grain by weight, incubated with or without the isolate for 7 days. After 10 days of incubation in a greenhouse at 20 to 25°C, only the inoculated plants exhibited symptoms of root and stalk rot. Since the inoculated organism was readily re-isolated from the diseased stems and roots, the pathogenicity of the isolate was confirmed. For field observation, the same hybrid of forage corn was sown in the fields in Nasushiobara, Tochigi, on 16 May 2011. The hybrid was sown in a row of 2 m, with 20 seeds planted at a distance of 10 cm with two replicates. For inoculum, the isolate was cultured on 5-cm-long wooden toothpicks, previously soaked in potato dextrose broth and placed on a V8 agar plate for 7 days at 25°C in the dark until covered by hyphae. The toothpicks were pierced into wounds made on the stems of corn plants, approximately 10 cm above the ground, using a thin iron needle. The wounds were about 2 mm in diameter and 2 cm deep. Field inoculation was conducted in late July at the R1 (silking) growth stage. Disease symptoms were observed in mid-September at R5, and only those plants that were inoculated with the toothpicks harboring the hyphae exhibited the typical stem rot symptoms. To our knowledge, this is the first report of root and stalk rot caused by P. arrhenomanes in forage corn in Japan. References: (1) K. Kageyama et al. J. Phytopathol. 151:485, 2003. (2) S. W. Ritchie et al. Spec. Rep. 48. Iowa State Univ. Coop Ext. Serv., Ames, 1993. (3) A. J. Van der Plaats-Niterink. Stud. Mycol. 21:1, 1981.


1969 ◽  
Vol 92 (1-2) ◽  
pp. 73-86 ◽  
Author(s):  
Ismael E. Badillo-Vargas ◽  
Lydia I. Rivera-Vargas ◽  
Juan Calle-Bellido

Thirteen Phoma spp. isolates collected during a survey conducted in onion field soils in Santa Isabel, Puerto Rico, were examined on the basis of morphology, pathogenicity and molecular characteristics. Twelve isolates were identified as Phoma putaminum Speg. and one isolate as an atypical Phoma macrostoma var. incolorata (section Phyllostictoides).This is the first report of P. putaminum and P. macrostoma var. incolorata for Puerto Rico and the Caribbean. In vitro, Phoma putaminum isolates were pathogenic to onion cvs. Mercedes and Excalibur, resulting in necrosis of young bulbs and roots seven days after inoculation. Disease incidence caused by P. putaminum was higher in cultivar Mercedes, ranging from 75 to 100%, than in P. macrostoma var. incolorata (0 to 25%). No symptoms were observed on cultivar Excalibur inoculated with P. macrostoma var. incolorata or on control plants. In vitro inoculations of commercial onion bulbs and field inoculations of roots failed to reproduce symptoms, thus showing that P. putaminum and P. macrostoma var. incolorata are weak pathogens. Sequence size of the nuclear internal transcribed spacer (ITS) of ribosomal DNA (rDNA) gene ranged from 458 to 610 base pairs (bp) for P. putaminum and was 456 bp for P. macrostoma var. incolorata isolate. Analysis of rDNA ITS region by PCR-RFLP showed that restriction enzyme, Hindlll, among other restriction enzymes evaluated (Alul, EcoRI, Clal and Seal), differentiate between P. putaminum and P. macrostoma var. incolorata isolates.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1452
Author(s):  
Raluca-Maria Pârlici ◽  
Aurel Maxim ◽  
Stefania Mirela Mang ◽  
Ippolito Camele ◽  
Lucia Mihalescu ◽  
...  

Organic berry plantations have been gaining popularity among farmers during recent years. Even so, farmers experience serious challenges in disease control management, which is a concern in organic farming. Phragmidiumrubi-idaei (DC) P. Karst is the pathogen responsible for blackberry and raspberry rust disease, one of the most present and active diseases in plantations. The antifungal certified products found on the organic farming market offer the opportunity for an efficient control strategy over plant pathogens in fruit shrub plantations. In this study, 5 natural based products—namely Altosan, Mimox, Canelys, Zitron, and Zeolite—were tested for their fungistatic effect over P. rubi-idaei. The experiments were carried out under laboratory conditions, performing observations over the impact of organic products, used at different concentration levels, on rust conidia germination. Moreover, field experiments were conducted in order to evaluate the efficiency of different treatments for rust control on raspberry (‘Polka’, ‘Veten’ and ‘Heritage’) and blackberry (‘Thorn Free’, ‘Chester’ and ‘Loch Ness’) varieties. Data analysis based on ANOVA tests showed significant differences between the tested variants and the control sample at p < 0.001. Furthermore, LSD test confirmed differences between all substances tested (p < 0.005). The natural products Canelys (formulated with cinnamon) and Zytron (based on citrus extract) have proven the highest inhibitory capacity for conidia germination during in vitro tests registering values of 80.42% and 78.34%, respectively. The same high inhibitory rates against rust pathogen were kept also in the field tests using the same two natural-based products mentioned earlier. In addition, outcomes from this study demonstrated that Zeolite is not recommended for raspberry or blackberry rust control.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Dominik Bleša ◽  
Pavel Matušinský ◽  
Romana Sedmíková ◽  
Milan Baláž

The use of biological control is becoming a common practice in plant production. One overlooked group of organisms potentially suitable for biological control are Rhizoctonia-like (Rh-like) fungi. Some of them are capable of forming endophytic associations with a large group of higher plants as well as mycorrhizal symbioses. Various benefits of endophytic associations were proved, including amelioration of devastating effects of pathogens such as Fusarium culmorum. The advantage of Rh-like endophytes over strictly biotrophic mycorrhizal organisms is the possibility of their cultivation on organic substrates, which makes their use more suitable for production. We focused on abilities of five Rh-like fungi isolated from orchid mycorrhizas, endophytic fungi Serendipita indica, Microdochium bolleyi and pathogenic Ceratobasidium cereale to inhibit the growth of pathogenic F. culmorum or Pyrenophora teres in vitro. We also analysed their suppressive effect on wheat infection by F. culmorum in a growth chamber, as well as an effect on barley under field conditions. Some of the Rh-like fungi affected the growth of plant pathogens in vitro, then the interaction with plants was tested. Beneficial effect was especially noted in the pot experiments, where wheat plants were negatively influenced by F. culmorum. Inoculation with S. indica caused higher dry shoot biomass in comparison to plants treated with fungicide. Prospective for future work are the effects of these endophytes on plant signalling pathways, factors affecting the level of colonization and surviving of infectious particles.


2019 ◽  
Vol 109 (12) ◽  
pp. 2055-2063 ◽  
Author(s):  
Francesca Dennert ◽  
Joana Beatrice Meyer ◽  
Daniel Rigling ◽  
Simone Prospero

Intraspecific cryptic invasions may occur when new strains of an invasive species are introduced into an area where this species had already been introduced previously. In plant pathogens, such invasions are not well studied, even if, potentially, they can have severe consequences. Here, we investigated the effects of a potential intraspecific invasion in Europe of Cryphonectria parasitica, the causal agent of chestnut blight. Specifically, we tested the hypotheses that (i) non-European strains are more virulent on Castanea sativa than those already present in Europe because they have never encountered this new host, and (ii) the variation in virulence among strains is higher within native than within introduced populations. In a greenhouse, 2-year-old C. sativa seedlings were inoculated with Cryphonectria parasitica strains from South Korea, the United States, and Switzerland, and lesion development and seedling mortality were recorded weekly. Additionally, growth and sporulation of the strains were measured in vitro on agar medium at 15 and 24°C. Although lesion growth was similar for all strains, seedlings inoculated with strains from South Korea and Switzerland died faster than seedlings inoculated with strains from the United States. Moreover, in vitro strains from South Korea grew faster and produced more spores at both temperatures than the strains from the other two countries. In conclusion, our results did not support the two hypotheses. All strains, regardless of their origin, were found to be highly virulent on the inoculated chestnut seedlings. Nevertheless, current phytosanitary measures to avoid the introduction of new genotypes of C. parasitica into Europe should be further implemented.


Botany ◽  
2012 ◽  
Vol 90 (9) ◽  
pp. 866-875 ◽  
Author(s):  
Deana L. Baucom ◽  
Marie Romero ◽  
Robert Belfon ◽  
Rebecca Creamer

New species of Undifilum , from locoweeds Astragalus lentiginosus Vitman and Astragalus mollissimus Torr., are described using morphological characteristics and molecular phylogenetic analyses as Undifilum fulvum Baucom & Creamer sp. nov. and Undifilum cinereum Baucom & Creamer sp. nov. Fungi were isolated from dried plants of A. lentiginosus var. araneosus , diphysus , lentiginosus , and wahweapensis collected from Arizona, Oregon, and Utah, USA, and A. mollissimus var. biglovii , earleii , and mollissimus collected from New Mexico, Oklahoma, and Texas, USA. Endophytic fungi from Astragalus locoweeds were compared to Undifilum oxytropis isolates obtained from dried plant material of Oxytropis lamberteii from New Mexico and Oxytropis sericea from Arizona, Colorado, New Mexico, Utah, and Wyoming. Extremely slow growth in vitro was observed for all, and conidia, if present, were ellipsoid with transverse septa. However, in vitro color, growth on four different media, and conidium size differed between fungi from Astragalus spp. and U. oxytropis. Neighbor-joining analyses of internal transcribed spacer (ITS) region and glyceraldehyde-3-phosphate dehydrogenase (GPD) gene sequences revealed that U. fulvum and U. cinereum formed a clade distinct from U. oxytropis. This was supported by neighbor-joining analyses of results generated from random amplified polymorphic DNA (RAPD) fragments using two different primers.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 397
Author(s):  
Laura Settier-Ramírez ◽  
Gracia López-Carballo ◽  
Pilar Hernández-Muñoz ◽  
Angélique Fontana ◽  
Caroline Strub ◽  
...  

Wild yeasts isolated from the surface of apples were screened for antagonistic activity against Penicillium expansum, the main producer of the mycotoxin patulin. Three antagonistic yeasts (Y33, Y29 and Y24) from a total of 90 were found to inhibit P. expansum growth. Identification by ITS region sequence and characterization showed that three selected isolates of yeast should be different strains of Metschnikowia pulcherrima. Several concentrations of the selected yeasts were used to study their in vitro antifungal effectivity against P. expansum on Petri dishes (plates with 63.6 cm2 surface) whereas their potential activity on patulin reduction was studied in liquid medium. Finally, the BCA that had the best in vitro antifungal capacity against P. and the best patulin degradation capacity was selected to be assessed directly on apples. All the selected strains demonstrated antifungal activity in vitro but the most efficient was the strain Y29. Isolated strains were able to reduce patulin content in liquid medium, Y29 being the only strain that completely reduced patulin levels within 120 h. The application of Y29 as biocontrol agent on the surface of apples inoculated with P. expansum, inhibited fungal growth and patulin production during storage. Therefore, the results shown that this yeast strain could be used for the reduction of P. expansum and its mycotoxin in apples or apple-based products by adapting the procedure application.


2021 ◽  
Author(s):  
Yuchen Sun ◽  
Jizhao Wang ◽  
Xuanzi Sun ◽  
Jing Li ◽  
Xu Zhao ◽  
...  

Abstract Background Radioresistance, a poorly understood phenomenon, results in the failure of radiotherapy and consequent local recurrence, threatening a large proportion of ESCC patients. To date, lncRNAs have been found to be involved in diverse biological processes, including radioresistance.Methods ELISA was used to evaluated the H3 modifications in radio-resistant ESCC cells. FISH and qRT-PCR were adopted to examine the expression and localization of lncRNA-NORAD, pri-miR-199a and miR-199a. Electron microscopy and Nanoparticle tracking analysis (NTA) was conducted to observe and identify exosomes. High-throughput RNA sequencing and TMT mass spectrometry were performed to identify the functional lncRNAs and proteins involved in ESCC radioresistance. A series of in vitro and in vivo experiments were performed to investigate the biological effect of NORAD. CHIP, qPCR-RIP, co-IP and dual-luciferase reporter assays were used to explore the interaction of related RNAs and proteins. Results We show here that a DNA damage activated non-coding RNA-NORAD, which is critical for ESCC radio-resistance. NORAD was highly expressed in radio-resistant ESCC cells and tissues. Irradiation treatment promotes NORAD expression via enhancing H3K4me2 enrichment on its region. NORAD knockdown cells exhibit significantly hypersensitivity to irradiation in vivo and in vitro. NORAD is required for initiating repair and restart of stalled forks, G2 cycle arrest and homologous recombination repair upon irradiation treatment. Mechanistically, NORAD inhibits miR-199a expression by competitively binding PUM1 from pri-miR-199a, inhibiting the process of pri-miR-199a. Mature miR-199a in NORAD-knockdown cells can be packaged into exosomes; miR-199a restores the radiosensitivity of radioresistant cells by targeting EEPD1, then inhibiting ATR/Chk1 signaling pathway. Simultaneously, NORAD knockdown blocks the ubiquitination of PD-L1, leads to the better response for radiation and anti-PD-1 treatment in mouse model.Conclusion This study raises the possibility that LncRNA-NORAD could be a potential treatment target for improving the efficiency of immunotherapy in combination with radiation in ESCC.


Sign in / Sign up

Export Citation Format

Share Document