scholarly journals Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity

2021 ◽  
Vol 9 (9) ◽  
pp. 1914
Author(s):  
Isabel Carvalho ◽  
José António Carvalho ◽  
Sandra Martínez-Álvarez ◽  
Madjid Sadi ◽  
Rosa Capita ◽  
...  

Background: Enterobacteriaceae are major players in the spread of resistance to β-lactam antibiotics through the action of CTX-M β-lactamases. We aimed to analyze the diversity and genetic characteristics of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates from patients in a Northern Portuguese hospital. Methods: A total of 62 cefotaxime/ceftazidime-resistant E. coli (n = 38) and K. pneumoniae (n = 24) clinical isolates were studied. Identification was performed by MALDI-TOF MS. Antimicrobial susceptibility testing against 13 antibiotics was performed. Detection of ESBL-encoding genes and other resistance genes, phylogenetic grouping, and molecular typing (for selected isolates) was carried out by PCR/sequencing. Results: ESBL activity was detected in all 62 E. coli and K. pneumoniae isolates. Most of the ESBL-producing E. coli isolates carried a blaCTX-M gene (37/38 isolates), being blaCTX-M-15 predominant (n = 32), although blaCTX-M-27 (n = 1) and blaCTX-M-1 (n = 1) were also detected. Two E. coli isolates carried the blaKPC2/3 gene. The lineages ST131-B2 and ST410-A were detected among the ESBL-producing blood E. coli isolates. Regarding the 24 ESBL-producing K. pneumoniae isolates, 18 carried a blaCTX-M gene (blaCTX-M-15, 16 isolates; blaCTX-M-55, 2 isolates). All K. pneumoniae isolates carried blaSHV genes, including ESBL-variants (blaSHV-12 and blaSHV-27, 14 isolates) or non-ESBL-variants (blaSHV-11 and blaSHV-28, 10 isolates); ten K. pneumoniae isolates also carried the blaKPC2/3 gene and showed imipenem-resistance. ESBL-positive E. coli isolates were ascribed to the B2 phylogenetic group (82%), mostly associated with ST131 lineage and, at a lower rate, to ST410/A. Regarding K. pneumoniae, the three international lineages ST15, ST147, and ST280 were detected among selected isolates. Conclusions: Different ESBL variants of CTX-M (especially CTX-M-15) and SHV-type (specially SHV-12) were detected among CTX/CAZRE. coli and K. pneumoniae isolates, in occasions associated with carbapenemase genes (blaKPC2/3 gene).

2015 ◽  
Vol 78 (5) ◽  
pp. 1018-1023 ◽  
Author(s):  
MEILI XI ◽  
QIAN WU ◽  
XIN WANG ◽  
BAOWEI YANG ◽  
XIAODONG XIA ◽  
...  

Extended-spectrum β-lactamase (ESBL)–producing Escherichia coli strains have been reported worldwide; however, the incidence and characterization of foodborne ESBL-producing E. coli strains have been rarely reported in the People's Republic of China. Among a collection of 659 E. coli isolates recovered from retail foods in Shaanxi Province, People's Republic of China, 223 cefoxitin-resistant and/or cefoperazone-resistant isolates were screened for ESBL production with the double disk diffusion test. The ESBL-producing isolates were characterized for antimicrobial resistance and the presence of blaTEM, blaSHV, and blaCTX-M genes. Isolates with blaCTX-M were further classified by PCR as having blaCTX-M-1, blaCTX-M-2, blaCTX-M-8, blaCTX-M-9, or blaCTX-M-25. One hundred forty-seven isolates were identified as ESBL positive. PCR detection revealed that 146 isolates (99.3%) contained the blaCTX-M gene. Among these isolates, 42 (28.8%) were positive for the enzyme CTX-M-1, 5 (3.4%) for CTX-M-2, and 99 (67.8%) for CTX-M-9. No CTX-M-8 and CTX-M-25 were found in this study. One hundred fifteen isolates (78.2%) were positive for the blaTEM gene, but blaSHV was not detected. Among the 147 ESBL-producing E. coli isolates, 75 (51.0%), 35 (23.8%), and 4 (2.7%) isolates were positive for blaTEM and blaCTX-M-9, blaTEM and blaCTX-M-1, and blaTEM and blaCTX-M-2, respectively. All of the 147 ESBL-producing isolates were resistant to three or more non–β-lactam antibiotics. This study provides evidence that foodborne E. coli can harbor ESBL-encoding genes. Thus, food could be a vehicle for the dissemination of ESBL-producing E. coli strains, a situation that requires surveillance and appropriate management strategies.


2013 ◽  
Vol 58 (2) ◽  
pp. 789-794 ◽  
Author(s):  
Dorina Timofte ◽  
Iuliana E. Maciuca ◽  
Nicholas J. Evans ◽  
Helen Williams ◽  
Andrew Wattret ◽  
...  

ABSTRACTRecent reports raised concerns about the role that farm stock may play in the dissemination of extended-spectrum β-lactamase (ESBL)-producing bacteria. This study characterized the ESBLs in twoEscherichia coliand threeKlebsiella pneumoniaesubsp.pneumoniaeisolates from cases of clinical bovine mastitis in the United Kingdom. Bacterial culture and sensitivity testing of bovine mastitic milk samples identified Gram-negative cefpodoxime-resistant isolates, which were assessed for their ESBL phenotypes. Conjugation experiments and PCR-based replicon typing (PBRT) were used for characterization of transferable plasmids.E. coliisolates belonged to sequence type 88 (ST88; determined by multilocus sequence typing) and carriedblaCTX-M-15andblaTEM-1, whileK. pneumoniaesubsp.pneumoniaeisolates carriedblaSHV-12andblaTEM-1. Conjugation experiments demonstrated thatblaCTX-M-15andblaTEM-1were carried on a conjugative plasmid inE. coli, and PBRT identified this to be an IncI1 plasmid. The resistance genes were nontransferable inK. pneumoniaesubsp.pneumoniaeisolates. Moreover, in theE. coliisolates, an association of ISEcp1 and IS26withblaCTX-M-15was found where the IS26element was inserted upstream of both ISEcp1and theblaCTX-Mpromoter, a genetic arrangement highly similar to that described in some United Kingdom human isolates. We report the first cases in Europe of bovine mastitis due toE. coliCTX-M-15 and also of bovine mastitis due toK. pneumoniaesubsp.pneumoniaeSHV-12 β-lactamases in the United Kingdom. We also describe the genetic environment ofblaCTX-M-15and highlight the role that IncI1 plasmids may play in the spread and dissemination of ESBL genes, which have been described in both human and cattle isolates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Amin Mir ◽  
Muhammad Waqar Ashraf ◽  
Vibha Tripathi ◽  
Bilal Ahmad Mir

AbstractThe health of the hospital associated persons, particularly those dealing directly with insertion of devices, are serious cause of concern for hospitals. In this study, the most prevalent organism on the surface of medical devices in PICU were CoNS (16.66%) and Staphylococcus aureus (16.66%), while in NICU the most prevalent organism was Klebsiella spp. (11.25%) among Entero-bacteriaceae group followed by Acinetobacter baumannii (10%), Escherichia coli (2.5%), CoNS (6.25%), S. aureus (6.25%) and Enterococcus faecalis (6.25%). The most common species identified from blood specimen of clinical samples shows the maximum presence of Candida sp. (60/135) followed by A. baumannii (21/135), Klebsiella Pneumoniae (20/135), Enterococci (12/135), Burkholderia cepacia complex (8/135), S. aureus (6/135), E. coli (5/135), Pseudomonas aeruginosa (3/135). Different antibiotics have been used against these micro-organisms; but Cotrimoxazole, Vancomycin have been found more effective against CoNS bacteria, Clindamycin, Tetracycline for S. aureus, Nitofurantoin for Acinetobacter, and for E. faecalis, A. baumanii, and Klebsiella, erythromycin, Colistin, and Ceftriaxone have been found more effective respectively.


Author(s):  
Nathália L. Andrade ◽  
Ana Carolina da Cruz Campos ◽  
Andrea Maria Cabral ◽  
Paula Hesselberg Damasco ◽  
Jerome Lo-Ten-Foe ◽  
...  

AbstractThe etiological agent for infective endocarditis (IE), a life-threatening disease, is usually gram-positive bacteria. However, gram-negative bacteria can rarely cause IE and 4% of cases are associated with morbidity and mortality. This study aimed to characterize Escherichia coli and Klebsiella pneumoniae isolates from the blood of patients with IE. The characteristics of blood isolates were compared with those of urinary isolates from patients with urinary tract infections (UTIs). The results of this study revealed that K. pneumoniae isolates from patients with IE were phylogenetically related to those from patients with UTI. Additionally, the resistance phenotype, resistance gene, virulence gene, and plasmid profiles were similar between the blood and urinary isolates. The isolates belonging to the sequence types (STs) 76, 36, 101 (K. pneumoniae), and 69 (E. coli) are reported to be associated with drug resistance. The Enterobacteriaceae isolates from patients with IE did not produce extended-spectrum β-lactamase or carbapenemase. Additionally, this study investigated the virulence phenotype, biofilm formation ability, and the ability to adhere to the epithelial cells in vitro of the isolates. The isolates from patients with IE exhibited weaker biofilm formation ability than the urinary isolates. All isolates from patients with IE could adhere to the renal epithelial cells. However, three isolates from patients with UTIs could not adhere to the epithelial cells. The closely related K. pneumoniae isolates (648, KP1, KP2, KP3, and KP4) could not form biofilms or adhere to the epithelial cells. In summary, the molecular analysis revealed that the genetic characteristics of IE-causing K. pneumoniae and E. coli were similar to those of UTI-causing isolates. These isolates belonged to the STs that are considered treatable. Genetically similar isolates did not exhibit the same virulence phenotype. Thus, these non-hypervirulent clones must be monitored as they can cause complex infections in susceptible hosts.


2020 ◽  
Vol 75 (7) ◽  
pp. 1726-1735 ◽  
Author(s):  
François Caméléna ◽  
Florence Morel ◽  
Manel Merimèche ◽  
Jean-Winoc Decousser ◽  
Hervé Jacquier ◽  
...  

Abstract Background The resistance to all aminoglycosides (AGs) conferred by 16S rRNA methyltransferase enzymes (16S-RMTases) is a major public health concern. Objectives To characterize the resistance genotype, its genetic environment and plasmid support, and the phylogenetic relatedness of 16S-RMTase-producing Escherichia coli from France. Methods We screened 137 E. coli isolates resistant to all clinically relevant AGs from nine Parisian hospitals for 16S-RMTases. WGS was performed on clinical isolates with high-level AG resistance (MIC ≥256 mg/L) and their transformants. Results Thirty of the 137 AG-resistant E. coli produced 16S-RMTases: 11 ArmA, 18 RmtB and 1 RmtC. The 16S-RMTase producers were also resistant to third-generation cephalosporins (90% due to a blaCTX-M gene), co-trimoxazole, fluoroquinolones and carbapenems (blaNDM and blaVIM genes) in 97%, 83%, 70% and 10% of cases, respectively. Phylogenomic diversity was high in ArmA producers, with 10 different STs, but a similar genetic environment, with the Tn1548 transposon carried by a plasmid closely related to pCTX-M-3 in 6/11 isolates. Conversely, RmtB producers belonged to 12 STs, the most frequent being ST405 and ST complex (STc) 10 (four and four isolates, respectively). The rmtB gene was carried by IncF plasmids in 10 isolates and was found in different genetic environments. The rmtC gene was carried by the pNDM-US plasmid. Conclusions ArmA and RmtB are the predominant 16S-RMTases in France, but their spread follows two different patterns: (i) dissemination of a conserved genetic support carrying armA in E. coli with high levels of genomic diversity; and (ii) various genetic environments surrounding rmtB in clonally related E. coli.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Deepa Karki ◽  
Binod Dhungel ◽  
Srijana Bhandari ◽  
Anil Kunwar ◽  
Prabhu Raj Joshi ◽  
...  

Abstract Background The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is alarmingly high. Reintroduction of colistin as last resort treatment in the infections caused by drug-resistant Gram-negative bacteria has led to the emergence and spread of colistin resistance. This study was designed to determine the prevalence of drug-resistance among beta-lactamase-producing strains of Escherichia coli and Klebsiella pneumoniae, isolated from the clinical specimens received at a tertiary care centre of Kathmandu, Nepal during the period of March to August, 2019. Methods A total of 3216 different clinical samples were processed in the Microbiology laboratory of Kathmandu Model Hospital. Gram-negative isolates (E. coli and K. pneumoniae) were processed for antimicrobial susceptibility test (AST) by using modified Kirby-Bauer disc diffusion method. Drug-resistant isolates were further screened for extended-spectrum beta-lactamase (ESBL), metallo-beta-lactamase (MBL), carbapenemase and K. pneumoniae carbapenemase (KPC) production tests. All the suspected enzyme producers were processed for phenotypic confirmatory tests. Colistin resistance was determined by minimum inhibitory concentration (MIC) using agar dilution method. Colistin resistant strains were further screened for plasmid-mediated mcr-1 gene using conventional polymerase chain reaction (PCR). Results Among the total samples processed, 16.4% (529/3216) samples had bacterial growth. A total of 583 bacterial isolates were recovered from 529 clinical samples. Among the total isolates, 78.0% (455/583) isolates were Gram-negative bacteria. The most predominant isolate among Gram-negatives was E. coli (66.4%; 302/455) and K. pneumoniae isolates were 9% (41/455). In AST, colistin, polymyxin B and tigecycline were the most effective antibiotics. The overall prevalence of multidrug-resistance (MDR) among both of the isolates was 58.0% (199/343). In the ESBL testing, 41.1% (n = 141) isolates were confirmed as ESBL-producers. The prevalence of ESBL-producing E. coli was 43% (130/302) whereas that of K. pneumoniae was 26.8% (11/41). Similarly, 12.5% (43/343) of the total isolates, 10.9% (33/302) of E. coli and 24.3% of (10/41) K. pneumoniae were resistant to carbapenem. Among 43 carbapenem resistant isolates, 30.2% (13/43) and 60.5% (26/43) were KPC and MBL-producers respectively. KPC-producers isolates of E. coli and K. pneumoniae were 33.3% (11/33) and 20% (2/10) respectively. Similarly, 63.6% (21/33) of the E. coli and 50% (5/10) of the K. pneumoniae were MBL-producers. In MIC assay, 2.2% (4/179) of E. coli and 10% (2/20) of K. pneumoniae isolates were confirmed as colistin resistant (MIC ≥ 4 µg/ml). Overall, the prevalence of colistin resistance was 3.1% (6/199) and acquisition of mcr-1 was 16.6% (3/18) among the E. coli isolates. Conclusion High prevalence of drug-resistance in our study is indicative of a deteriorating situation of AMR. Moreover, significant prevalence of resistant enzymes in our study reinforces their roles in the emergence of drug resistance. Resistance to last resort drug (colistin) and the isolation of mcr-1 indicate further urgency in infection management. Therefore, extensive surveillance, formulation and implementation of effective policies, augmentation of diagnostic facilities and incorporation of antibiotic stewardship programs can be some remedies to cope with this global crisis.


2019 ◽  
Vol 28 (6) ◽  
pp. 547-551 ◽  
Author(s):  
Hossein Kazemian ◽  
Hamid Heidari ◽  
Roya Ghanavati ◽  
Sobhan Ghafourian ◽  
Fateme Yazdani ◽  
...  

Objectives: Drug resistance among gram-negative bacteria is a worldwide challenge. Due to the importance of drug-resistant Klebsiella pneumoniae and Escherichia coli strains in hospital-acquired infections, we aimed to determine the phenotypic and genotypic characteristics of ESBL-, AmpC-, and carbapenemase-producing isolates obtained from hospitalized patients in Tehran and Ilam (Iran). Materials and Methods: In total, 90 K. pneumoniae isolates and 65 E. coli isolates were collected from various infections. Phenotypic identification of bacterial isolates was performed using standard methods. Phenotypic screening of ESBL, AmpC, and carbapenemase enzymes was carried out. Detection of ESBL, AmpC, and carbapenemase genes was also performed by the PCR method. Results: Phenotypic detection tests showed that 36 (40%) K. pneumoniae and 23 (35.4%) E. coli isolates were ESBL producers. Moreover, 18 (20%) and 6 (9.2%) K. pneumoniae and E. coli isolates were AmpC producers, respectively. Modified Hodge test results indicated that 39 (43.3%) K. pneumoniae and 18 (27.7%) E. coli isolates produced carbapenemase. Molecular tests showed that 40% of K. pneumoniae and 36.9% of E. coli isolates were ESBL positive. AmpC was detected in 24.4 and 13.8% of K. pneumoniae and E. coli isolates. Carbapenemase was detected in 34 (37.8%) K. pneumoniae and 13 (20%) E. coli isolates. ­Conclusion: In this study, 3 K. pneumoniae isolates simultaneously carried ESBL, AmpC, and carbapenemase genes. Up-to-date strategies such as combination therapy or utilization of new antimicrobial agents might help to combat such drug-resistant organisms.


2017 ◽  
Vol 74 (8) ◽  
pp. 715-721 ◽  
Author(s):  
Anika Trudic ◽  
Zora Jelesic ◽  
Mira Mihajlovic-Ukropina ◽  
Deana Medic ◽  
Branka Zivlak ◽  
...  

Background/Aim. Carbapenem resistance has escalated in medically important enterobacteria such as Klebsiella pneumoniae and Escherichia coli worldwide. Multidrug-resistant strains represent an important source of concern as effective therapeutic options of infections they cause are limited or none. There were no comprehensive studies considering the presence of carbapenemase production in enterobacteria in Serbia so far. The aim of the study was to determine carbapenemase production in hospital isolates of multidrug-resistant K. pneumoniae and E. coli in Serbia. Methods. Strains of K. pneumoniae and E. coli resistant to at least one carbapenem (imipenem, meropenem, ertapenem) were collected from November 2013 to May 2014. Isolates were obtained from clinical samples of patients treated in 14 hospitals in Serbia. Carbapenem resistance was confirmed using phenotypic tests and polymerase chain reaction (PCR) in National Reference Laboratory for Registration and Surveillance of Antimicrobial Resistance of Bacterial Strains in Novi Sad. Results. Of 129 collected strains, 121 (93.8%) were K. pneumoniae and 8 (6.2%) were E. coli. Seventy (54.3%) strains were obtained from urine, 26 (20.2%) from blood, 19 (14.7%) from wound secretions and 14 (10.9%) from lower respiratory tract secretions. Carbapenemase genes were detected in 58 (45%) isolates. The gene bla New Delhimetallo-beta-lactamases (blaNDM) was found in 33 (27.3%) K. pneumoniae, bla oxacillinases-48 (blaOXA-48) in 10 (8.3%), bla K. pneumonia carbapenemase (blaKPC) in 1 (0.8%), and 7 (5.4%) strains harbored both blaOXA-48 and blaNDM. Seven E.coli harbored blaNDM gene. Conclusions. In Serbia, the most common type of carbapenemase in both multidrug-resistant K. pneumoniae and E. coli is NDM. Co-production of OXA-48 and NDM was found in K. pneumoniae. To our knowledge, KPC production was detected for the first time in Serbia.


Author(s):  
Ibtisam Habeeb AL-Azawi ◽  
Aqeel Reheeum Hassan ◽  
Alaa Hamza Jaber

A total of 49 different clinical samples (urine n=30, stool n=10, and blood n=8) were collected from patient admitted to the Al-Sadder medical City in Al-Najaf Governorate-Iraq. The results demonstrated that 49 specimens (100%) were diagnosed as E. coli by cultural, biochemical characteristics and Vitek2® system. Polymerase Chain Reaction has been used to detect of some genes which coding antimicrobial resistance in E. coli isolates. Regarding genes that responsible for ESBL enzymes (blaCTX-M, blaOXA and blaTEM), the current results proved that blaTEM genes have highest rate (97.95%) followed by blaTEM and blaOXA (93.75%) for each.


Sign in / Sign up

Export Citation Format

Share Document