scholarly journals Bioactive Potential of Two Marine Picocyanobacteria Belonging to Cyanobium and Synechococcus Genera

2021 ◽  
Vol 9 (10) ◽  
pp. 2048
Author(s):  
Patrizia Pagliara ◽  
Giuseppe Egidio De Benedetto ◽  
Matteo Francavilla ◽  
Amilcare Barca ◽  
Carmela Caroppo

Coccoid cyanobacteria produce a great variety of secondary metabolites, which may have useful properties, such as antibacterial, antiviral, anticoagulant or anticancer activities. These cyanobacterial metabolites have high ecological significance, and they could be considered responsible for the widespread occurrence of these microorganisms. Considering the great benefit derived from the identification of competent cyanobacteria for the extraction of bioactive compounds, two strains of picocyanobacteria (coccoid cyanobacteria < 3 µm) (Cyanobium sp. ITAC108 and Synechococcus sp. ITAC107) isolated from the Mediterranean sponge Petrosia ficiformis were analyzed. The biological effects of organic and aqueous extracts from these picocyanobacteria toward the nauplii of Artemia salina, sea urchin embryos and human cancer lines (HeLa cells) were evaluated. Methanolic and aqueous extracts from the two strains strongly inhibited larval development; on the contrary, in ethyl acetate and hexane extracts, the percentage of anomalous embryos was low. Moreover, all the extracts of the two strains inhibited HeLa cell proliferation, but methanol extracts exerted the highest activity. Gas chromatography–mass spectrometry analysis evidenced for the first time the presence of β-N-methylamino-l-alanine and microcystin in these picocyanobacteria. The strong cytotoxic activity observed for aqueous and methanolic extracts of these two cyanobacteria laid the foundation for the production of bioactive compounds of pharmacological interest.

Author(s):  
Devakumar Devakumar Joseph ◽  
Keerthana Veerasamy ◽  
Sudha Siva Singaram

ABSTRACTObjective: The aim of this study was to investigate the presence of bioactive compounds in the methanolic leaf extract of Syzygium jambos.Methods: Collected leaves were shade dried and made into fine powder, extracted with methanol, and the methanolic extract was prepared andanalyzed for the presence of bioactive compounds by gas chromatography-mass spectrometry (GC-MS). The mass spectrum of the chromatographywas matched with NIST and WILEY Libraries.Results: The GC-MS analysis revealed the presence of 45 active compounds in the extract. From the GC-MS investigation, 1-Deoxy-d-mannitol3-methyl-2-methylsulfanyl-5-nitro-6-pyridin-4-ylpyrimidin-4-one, 3-Pentadecylphenol, 2-biphenylene carboxylic acid, Quinoline-3-carboxylic acid,and Stigmast-5-en-3-ol are important phytoconstituents which have antipyretic and antiparasitic activities.Conclusion: The present investigation revealed preliminary information on phytocompounds presented in S. jambos leaf extract which is very usefulfor the human community.Keywords: Syzygium jambos, Gas chromatography-mass spectrometry analysis, 1-Deoxy-d-mannitol, Phytoconstituents, Methanolic leaf extract.


Author(s):  
Kuladip Gurav ◽  
Varsha Jadhav (rathod)

Objective: The aim was to investigate important bioactive compounds, biological activities, and medicinal importance of Zanthoxylum rhetsa fruits.Methods: The present work was carried out by gas chromatography–mass spectrometry (GC-MS) method for the identification of different compounds.Result: The methanolic extract of fruits showed 32 chemical compounds which are identified through GC-MS analysis. Among them, some of the compound names and percentage values are as follows: 2-propanone, 1,3-dihydroxy (48.9%), 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl (33.7%), 2-furancarboxaldehyde, 5-[hydroxymethyl] (50.2%), 1-Heptatriacontanol (34.4%), 9,12-octadecadienoic acid (zz)- (48.6%), cholestan- 3-ol,2-methylene, [3β,5α] (75.0%), 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl (90.8), 2-furancarboxaldehyde, 5-[hydroxymethyl] (92.0%), hydroquinone (64.9%), n-hexadecanoic acid (37.5%), octadecanoic acid (28.2%), 9,12,15, octadecatrienoic acid, 2-[(trimethylsiyl]oxy]-1- [(trimethylsiyl]oxy]methyl] ethyl ester, [zzz] (22.6%), 9-hexadecanoic acid (10.3%), digitoxin (18.8%), 8,11,14-eicosatrienoic acid methyl ester, [zzz] (25.5%), and oleic acid (16.5%). Most of the identified compounds in the crude methanolic extracts exhibit some bioactivities, namely anticancer, anti-inflammatory, antimicrobial, hepatoprotective, antioxidant, hypocholesterolemic, nematicide, pesticide, anti-androgenic flavor, hemolytic, 5-alpha-reductase inhibitor, insectifuge, antiarthritic, anti-coronary, cardiovascular, anti-breast cancer, aromatic, and insectifuge. On the basis of the above investigation, the fruits can be recommended as a treasure of bioactive compounds and it plays a promising role in herbal medicine.Conclusion: The present study reveals that fruits of Z. rhetsa contain various bioactive compounds. Digitoxin is recorded in the ripened fruit of Z. rhetsa and it shows the anticancerous and cardiac arrest properties. Hence, in future, this plant will play a promising role in curing cancer.


Author(s):  
KALAIMAGAL C

Objective: Herbs are a key resource with therapeutic properties. Nowadays, there is a focus on the identification of bioactive compounds with the ability to act against various disorders. Methods: In the present study, gas chromatography–mass spectrometry analysis was conducted to determine the occurrence of different phytochemical compounds in ethanolic flower extract of Tabernaemontana divaricata (L.). Results: The ethanol extract of flower revealed the presence of several bioactive compounds such as n-hexadecanoic acid, squalene, Vitamin D3, Vitamin A aldehyde, desulfosinigrin, and Urs-12-en-24-oic acid, 3-oxo-, methyl ester, (+)-. Conclusion: The perceived compounds from ethanolic extract of flower have diverse beneficial properties such as antimicrobial, antioxidant, cancer anticipatory effect, pesticide, and antiarthritic.


Author(s):  
Hima Bindu Bssn ◽  
Rajesh Kumar Munaganti ◽  
Vijayalakshmi Muvva ◽  
Krishna Naragani ◽  
Mani Deepa Indupalli

Objectives: Optimization, isolation, and characterization of bioactive compounds from Streptomyces lavendulocolor VHB-9 isolated from granite mines of Mudigonda village of Khammam district of Telangana state.Methods: The potent strain was identified as S. lavendulocolor VHB-9 by polyphasic taxonomy. The influence of culture conditions on growth and bioactive compounds production was investigated. Purification of bioactive compounds was done using column chromatography. The structures of the compounds were elucidated on the basis of spectroscopic analysis including Fourier transform infrared, electron spray ionization mass spectrophotometry,1H nuclear magnetic resonance (NMR), and13C NMR. The antimicrobial activity of the compounds produced by the strain was tested against both Gram-positive and Gram-negative bacteria and fungi in terms of minimum inhibitory concentration.Results: Isolation and identification of two compounds, namely (2R, 3R)-2, 3-Butanediol (B1A), and nonadecanoic acid (B1B). Fraction B4 was isolated partially purified fraction and identified by the gas chromatography-mass spectrometry analysis. B1B compound exhibited the highest activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans when compared to B1A and B4 compounds.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mycal Dutta ◽  
Mohammad Nezam ◽  
Subrata Chowdhury ◽  
Ahmed Rakib ◽  
Arkajyoti Paul ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first recognized in Wuhan in late 2019 and, since then, had spread globally, eventually culminating in the ongoing pandemic. As there is a lack of targeted therapeutics, there is certain opportunity for the scientific community to develop new drugs or vaccines against COVID-19 and so many synthetic bioactive compounds are undergoing clinical trials. In most of the countries, due to the broad therapeutic spectrum and minimal side effects, medicinal plants have been used widely throughout history as traditional healing remedy. Because of the unavailability of synthetic bioactive antiviral drugs, hence all possible efforts have been focused on the search for new drugs and alternative medicines from different herbal formulations. In recent times, it has been assured that the Mpro, also called 3CLpro, is the SARS-CoV-2 main protease enzyme responsible for viral reproduction and thereby impeding the host’s immune response. As such, Mpro represents a highly specified target for drugs capable of inhibitory action against coronavirus disease 2019 (COVID-19). As there continue to be no clear options for the treatment of COVID-19, the identification of potential candidates has become a necessity. The present investigation focuses on the in silico pharmacological activity of Calotropis gigantea, a large shrub, as a potential option for COVID-19 Mpro inhibition and includes an ADME/T profile analysis of that ligand. For this study, with the help of gas chromatography–mass spectrometry analysis of C. gigantea methanolic leaf extract, a total of 30 bioactive compounds were selected. Our analyses unveiled the top four options that might turn out to be prospective anti–SARS-CoV-2 lead molecules; these warrant further exploration as well as possible application in processes of drug development to combat COVID-19.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jie Tang ◽  
Dan Lei ◽  
Min Wu ◽  
Qiong Hu ◽  
Qing Zhang

Abstract Fenvalerate is a pyrethroid insecticide with rapid action, strong targeting, broad spectrum, and high efficiency. However, continued use of fenvalerate has resulted in its widespread presence as a pollutant in surface streams and soils, causing serious environmental pollution. Pesticide residues in the soil are closely related to food safety, yet little is known regarding the kinetics and metabolic behaviors of fenvalerate. In this study, a fenvalerate-degrading microbial strain, CD-9, isolated from factory sludge, was identified as Citrobacter freundii based on morphological, physio-biochemical, and 16S rRNA sequence analysis. Response surface methodology analysis showed that the optimum conditions for fenvalerate degradation by CD-9 were pH 6.3, substrate concentration 77 mg/L, and inoculum amount 6% (v/v). Under these conditions, approximately 88% of fenvalerate present was degraded within 72 h of culture. Based on high-performance liquid chromatography and gas chromatography-mass spectrometry analysis, ten metabolites were confirmed after the degradation of fenvalerate by strain CD-9. Among them, o-phthalaldehyde is a new metabolite for fenvalerate degradation. Based on the identified metabolites, a possible degradation pathway of fenvalerate by C. freundii CD-9 was proposed. Furthermore, the enzyme localization method was used to study CD-9 bacteria and determine that its degrading enzyme is an intracellular enzyme. The degradation rate of fenvalerate by a crude enzyme solution for over 30 min was 73.87%. These results showed that strain CD-9 may be a suitable organism to eliminate environmental pollution by pyrethroid insecticides and provide a future reference for the preparation of microbial degradation agents and environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document