scholarly journals Gut Bacteria and Neuropsychiatric Disorders

2021 ◽  
Vol 9 (12) ◽  
pp. 2583
Author(s):  
Leon M. T. Dicks ◽  
Diron Hurn ◽  
Demi Hermanus

Bacteria in the gut microbiome plays an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. Apart from physiological and structural changes brought about by gut bacteria on entero-epithelial cells and mucus layers, a vast number of signals generated in the gastro-intestinal tract (GIT) reaches the brain via the vagus nerve. Research on the gut–brain axis (GBA) has mostly been devoted to digestive functions and satiety. Less papers have been published on the role gut microbiota play in mood, cognitive behavior and neuropsychiatric disorders such as autism, depression and schizophrenia. Whether we will be able to fully decipher the connection between gut microbiota and mental health is debatable, especially since the gut microbiome is diverse, everchanging and highly responsive to external stimuli. Nevertheless, the more we discover about the gut microbiome and the more we learn about the GBA, the greater the chance of developing novel therapeutics, probiotics and psychobiotics to treat gastro-intestinal disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), but also improve cognitive functions and prevent or treat mental disorders. In this review we focus on the influence gut bacteria and their metabolites have on neuropsychiatric disorders.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.


2022 ◽  
Vol 25 (8) ◽  
pp. 864-873
Author(s):  
A. Y. Tikunov ◽  
A. N. Shvalov ◽  
V. V. Morozov ◽  
I. V. Babkin ◽  
G. V. Seledtsova ◽  
...  

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1613 ◽  
Author(s):  
Ronald Hills ◽  
Benjamin Pontefract ◽  
Hillary Mishcon ◽  
Cody Black ◽  
Steven Sutton ◽  
...  

The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Nana Y. D. Ankrah ◽  
Brandon E. Barker ◽  
Joan Song ◽  
Cindy Wu ◽  
John G. McMullen ◽  
...  

ABSTRACT An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and their impact on host physiology. This research can be confounded by poorly understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multiway interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition, and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that, in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle, including 2-oxoglutarate and succinate, are produced at high flux and cross-fed between bacterial taxa, suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host. IMPORTANCE Drosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila. This revealed that metabolic interactions between Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bacteria and nutrient availability. Our results generate testable hypotheses about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.


Author(s):  
Ansh Chaudhary ◽  
Shubhi Shubhangi Bhatnagar ◽  
Meghna Prashant Nair ◽  
Bhupendra Chaudhary

Comprising of trillions of various bacteria, protozoan, fungi and viruses, the gut microbiota live in human body as a super complex ecosystem mostly in gastro intestinal tract (70%). Apart from GI tract they also inhabit skin, mouth and sexual organs as an essential ecological community of commensal, symbiotic or even pathogenic relationship. These microbiota interplay with bodily immune, endocrinal, metabolic and nervous system and produces various pathological changes responsible for disease etiology. These microbiota play a major role in digestion and absorption of macro molecules, maturation of immune system, protection of gut and behavioural development of an individual. In gut disorders like inflammatory bowel disease (IBD) or irritable bowel syndrome (IBS) the altered brain axis is responsible for disorders like depression, anxiety, schizoaffective disorders, autistic spectrum disorders, multiple sclerosis and parkinson’s disease. 


2021 ◽  
Author(s):  
Nana Y.D. Ankrah ◽  
Brandon E. Barker ◽  
Joan Song ◽  
Cindy Wu ◽  
John G. McMullen ◽  
...  

ABSTRACTAn important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and its impact on host physiology. This research can be confounded by poorly-understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multi-way interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle including 2-oxoglutarate and succinate are produced at high flux and cross-fed between bacterial taxa suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.IMPORTANCEDrosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila. This revealed that metabolic interactions between between Drosophila gut bacterial taxa are highly dynamic and influenced by co-occurring bacteria and nutrient availability. Our results generate testable hypothesis about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Giada De Palma ◽  
Premysl Bercik

Irritable bowel syndrome is the most common functional gastrointestinal disorder, affecting up to 9% individuals globally. Although the etiology of this syndrome is likely heterogenous, it presents with its hallmark symptoms of abdominal pain and altered intestinal motility. Moreover, it is considered to be a disorder of the gut-brain interaction, and the microbiome has often been implicated as a central player in its pathophysiology. Patients with irritable bowel syndrome display altered composition and function of the gut microbiota compared to healthy controls. Microbiome directed therapies, such as probiotics, antibiotics and fecal microbiome transplantation, appear to be beneficial for both gut symptoms and psychiatric comorbidities. This review aims to recapitulate the available literature on the microbiome contribution to the pathophysiology and symptoms presentation of irritable bowel syndrome, as well as the current literature on microbiome-targeted treatments for this disease.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Julien Tap ◽  
Stine Störsrud ◽  
Boris Le Nevé ◽  
Aurélie Cotillard ◽  
Nicolas Pons ◽  
...  

Abstract Background While several studies have documented associations between dietary habits and microbiota composition and function in healthy individuals, no study explored these associations in patients with irritable bowel syndrome (IBS), and especially with symptoms. Methods Here, we used a novel approach that combined data from a 4-day food diary, integrated into a food tree, together with gut microbiota (shotgun metagenomic) for individuals with IBS (N = 149) and healthy controls (N = 52). Paired microbiota and food-based trees allowed us to detect new associations between subspecies and diet. Combining co-inertia analysis and linear regression models, exhaled gas levels and symptom severity could be predicted from metagenomic and dietary data. Results We showed that individuals with severe IBS are characterized by a higher intake of poorer-quality food items during their main meals. Our analysis suggested that covariations between gut microbiota at subspecies level and diet could be explained with IBS symptom severity, exhaled gas, glycan metabolism, and meat/plant ratio. We provided evidence that IBS severity is associated with altered gut microbiota hydrogen function in correlation with microbiota enzymes involved in animal carbohydrate metabolism. Conclusions Our study provides an unprecedented resolution of diet-microbiota-symptom interactions and ultimately guides new interventional studies that aim to identify gut microbiome-based nutritional recommendations for the management of gastrointestinal symptoms. Trial registration This trial was registered on the ClinicalTrials.gov, with the registration number NCT01252550, on 3rd December 2010.


2020 ◽  
Author(s):  
Jiankai Wei ◽  
Hongwei Gao ◽  
Yang Yang ◽  
Haiming Liu ◽  
Haiyan Yu ◽  
...  

Abstract Background Gut microbiota plays important roles in host animal metabolism, homeostasis and environmental adaptation. However, the interplay between the gut microbiome and urochordate ascidian, the most closet relative of vertebrate, remains less explored. In this study, we characterized the gut microbial communities of urochordate ascidian ( Halocynthia roretzi ) across the changes of season and starvation stress using a comprehensive set of omic approaches including 16S rRNA gene amplicon sequencing, shotgun metagenomics, metabolomic profiling, and transcriptome sequencing. Results The 16S rRNA gene amplicon profiling revealed that ascidians harbor indigenous gut microbiota distinctly different to the marine microbial community and significant variations in composition and abundance of gut bacteria, with predominant bacterial orders representing each season. Depressed alpha-diversities of gut microbiota were observed across starvation stress when compared to the communities in aquafarm condition. Synechococcales involving photosynthesis and its related biosynthesis was reduced in abundance while the enrichments of Xanthomonadales and Legionellales may facilitate bile acid biosynthesis during starvation. Metabolomics analysis found that long chain fatty acids, linolenic acid,cyanoamino acid, and pigments derived from gut bacteria were upregulated, suggesting a beneficial contribution of the gut microbiome to the ascidian under starvation stress. Conclusions Our findings revealed seasonal variation of ascidian gut microbiota. Defense and energy-associated metabolites derived from gut microbiome may provide an adaptive interplay between gut microbiome and ascidian host that maintains a beneficial metabolic system across season and starvation stress. The diversity-generating metabolisms from both microbiota and host might lead to the co-evolution and environmental adaptation.


2020 ◽  
Author(s):  
Sharon Erdrich ◽  
Jason A Hawrelak ◽  
Stephen P Myers ◽  
Joanna E Harnett

Abstract Background The association between fibromyalgia and irritable bowel syndrome is well-established. Alterations in the composition and diversity of the gut microbiome in irritable bowel syndrome have been reported, however, this association is poorly understood in fibromyalgia. Our aim was to summarise the research reporting on the gastrointestinal microbiome and its biomarkers in people with fibromyalgia.Methods A systematic review of published original research reporting on the gastrointestinal microbiota and its biomarkers in adults with a diagnosis of fibromyalgia was undertaken.Results From 4771 studies, 11 met our inclusion criteria and were separated into four main groups: papers reporting Helicobacter pylori ; other gut bacterial markers; metabolomics and other biomarkers, which included intestinal permeability and small intestinal bacterial overgrowth.Conclusion The results suggest there is a paucity of quality research in this area, with indications that the gut microbiota may play a role in fibromyalgia within the emerging field of the gut-musculoskeletal axis. Further investigations into the relationship between the gut microbiota, gut dysfunction and fibromyalgia are warranted.


Sign in / Sign up

Export Citation Format

Share Document