scholarly journals Retention of Contaminants Elements from Tailings from Lead Mine Washing Plants in Ceramics for Bricks

Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 576 ◽  
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Mining activity is essential for the social welfare of the population. However, this activity produces a series of mining waste. These mining wastes, if not properly treated, can produce significant environmental pollution. This study develops the incorporation of tailings from washing plants in ceramic materials for bricks in order to retain the contaminating elements in the ceramic matrix. To this end, firstly, a physical and chemical characterisation of the mining waste is carried out and different groups of samples are conformed with clay and mining waste. These conformed samples with mining waste are evaluated through different physical and mechanical tests typical in the ceramic industry, studying the variation of properties by the incorporation of the waste. In turn, the leachates from the groups of conformed samples are analyzed, confirming the retention of the contaminating elements of the mining waste in the ceramic matrix. The results of these tests showed that ceramics can be made for bricks with up to 90% mining waste, obtaining physical and mechanical properties acceptable regarding the regulations and retaining the contaminating elements in the ceramic matrix, as confirmed by the leachate tests.

2018 ◽  
Vol 143 ◽  
pp. 02009 ◽  
Author(s):  
Andrey Stolboushkin ◽  
Danil Akst ◽  
Oksana Fomina ◽  
Aleksandr Ivanov

The given paper investigates the influence of manganese-containing wastes on bulk coloring and physical and mechanical properties of wall ceramic materials with matrix structure. Conventional research methods to study physical and mechanical properties of ceramic specimens were used in the present study. The structure and phase state of decorative ceramic materials were investigated by means of physical-chemical analysis. Authors suggested the model to form coloring layer in ceramic matrix composites based on argillaceous raw materials and coloring pigment. Macrostructure was studied on ceramic samples manufactured according to the developed method from clay loam of moderate plasticity and wastes of manganese mining. The paper provides results of pilot testing on production of colored ceramic brick. It was found that incorporation of coloring component does not decrease strength properties of ceramic matrix materials. Authors defined the palette and color code for decorative ceramic specimens manufactured with different content of coloring component of manganese mining wastes according to RGB color codes chart.


2006 ◽  
Vol 50 ◽  
pp. 130-140
Author(s):  
Roland Weiss

Ceramic Matrix Composites (CMC) have a wide interest for high temperature applications. The materials can be modified by the selection of the matrix precursor as well as of the reinforcing materials. C/C-composites can be easily modified by post-treatments with silicon in order to acquire different tribological properties from good sliding behaviour up to braking systems only depending on the manufacturing technique of these materials. It will be demonstrated during the presentation that the manufacturing depends on one hand side on the material which has to be manufactured and on the other side on the structural component and the number of parts which are required. Furthermore, it will also be shown, that silicon treatments can be performed up to a full conversion of C/C materials creating a new family of monolithic ceramic materials. Within the presentation detailed information will be given on possible processing routes as well as the resulting physical and mechanical properties of the materials.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


2021 ◽  
Vol 11 (8) ◽  
pp. 3334
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Energy consumption, because of population development, is progressively increasing. For this reason, new sources of energy are being developed, such as that produced from the combustion of biomass. However, this type of renewable energy has one main disadvantage, the production of waste. Biomass bottom ash is a residue of this industry that currently has not much use. For this reason, this research evaluates its use as a filler in bituminous mixtures, since this sector also has a significant impact on the environment, as it requires large quantities of raw materials. With this objective, first, the physical and chemical properties of biomass bottom ashes were evaluated, verifying their characteristics for their use as filler. Subsequently, bituminous mixtures were conformed with biomass bottom ash as filler, and their physical and mechanical properties were analyzed through particle loss and Marshall tests. The results of these tests were compared with those obtained with the same type of mixture but with conventional and ophite aggregates. This study confirmed that biomass bottom ash was viable for use as a filler, creating mixtures with a higher percentage of bitumen, better mechanical behavior, and similar physical properties. In short, more sustainable material for roads was obtained with waste currently condemned to landfill.


CERNE ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Hamid Reza Taghiyari ◽  
Roya Majidi ◽  
Asghar Jahangiri

ABSTRACT Effects of nanowollastonite (NW) adsorption on cellulose surface were studied on physical and mechanical properties of medium-density fiberboard (MDF) panels; properties were then compared with those of MDF panels without NW-content. The size range of NW was 30-110 nm. The interaction between NW and cellulose was investigated using density functional theory (DFT). Physical and mechanical tests were carried out in accordance with the Iranian National Standard ISIRI 9044 PB Type P2 (compatible with ASTM D1037-99) specifications. Results of DFT simulations showed strong adsorption of NW on cellulose surface. Moreover, mechanical properties demonstrated significant improvement. The improvement was attributed to the strong adsorption of NW on cellulose surface predicted by DFT, adding to the strength and integrity between wood fibers in NW-MDF panels. It was concluded that NW would improve mechanical properties in MDF panels as a wood-composite material, as well as being effective in improving its biological and thermal conductivity.


Author(s):  
J. Criollo Barahona ◽  
D. Román Robalino ◽  
E. Cabezas ◽  
E. Salazar Castañeda

The present investigation aims to determine the physical and mechanical properties in three-layer boards of Teak (Tectona grandis), Seike (Cedrelinga catenaeformis) and Mascarey (Hieronima alchorneoides), from the PISMADE S.A. Company, Canton Riobamba, province of Chimborazo. The three specimens used for each of the species in each of the tests performed were worked on using the ASTM D143-94 standard for the tests of parallel compression, perpendicular compression and flexion, and the DIN-52182 standard, with the main variation in thickness measurements caused by the commercial use established by the company. Mechanical tests showed that Seike had the best results, being superior in two tests: perpendicular compression and flexion. Teak tests gave us results that were superior in the perpendicular compression test. Mascarey, unlike the two species mentioned above, had complications during the trials due to problems with the glue between layers. Keywords: physical and mechanical properties of wood, three-layer boards. Resumen La presente investigación pretende: Determinar las propiedades físicas y mecánicas en tableros tricapa de Teca, Seike (Cedrelinga catenaeformis) y Mascarey (Hyeronima alchorneoides), Empresa PISMADE S.A., cantón Riobamba, provincia de Chimborazo; para lo cual se utilizaron 3 probetas por cada una de las especies en cada uno de los ensayos realizados, las mismas fueron trabajadas con base a la Norma ASTM D143-94 para las pruebas de compresión paralela, compresión perpendicular y flexión y la Norma DIN-52182, teniendo como principal variación en las medidas de espesor debido al uso comercial establecido por la empresa. Las pruebas mecánicas mostraron que Seike tuvo los mejores resultados al ser superior en dos ensayos: Compresión perpendicular y flexión. Los ensayos con Teca nos dieron como resultados que es superior en el ensayo de compresión perpendicular. Mascarey a diferencia de las dos especies mencionadas anteriormente tuvo complicaciones con los ensayos debido a problemas con el pegamento entre capas. Palabras clave: propiedades físicas y mecánicas de la madera, tableros tricapa.


2021 ◽  
Vol 6 ◽  
pp. 4-17
Author(s):  
V.V Koval ◽  
D.V. Miroshnichenko ◽  
O.V. Bogoyavlenska

The article substantiates the importance and problems of determining of such an indicator of the quality of solid fossil fuels, as mechanical strength. The strength of coal depends on a large number of factors (viscosity, brittleness, properties of structural bonds, etc.), the change of which is impossible to take into account. Therefore, the strength of coal in the sample, piece, pack and formation must be represented by some integral index, which inevitably fluctuates around a certain average value and can be determined only approximately. The evaluation of the strength properties of coal should be carried out on the basis of mass tests using statistical methods that allow to calculate the average value and coefficient of variation. Since the strength dispersion is mainly due to the natural inhomogeneity of the coal, the excessive accuracy of the measuring instruments has almost no effect on the statistical characteristics. Laboratory methods of mechanical tests of mine samples, in comparison with full-scale, as a rule, are very accessible and, at qualitative performance of tests, are highly reliable. The properties of coal as an object of enrichment and use are largely related to its physical properties. The physical properties of coal and mineral impurities significantly affect the formation of the main parameters that characterize the particle size distribution and fractional composition, it`s changes during the mining, transportation and enrichment processes. The basic physical and mechanical properties of solid fuels from the point of view of their industrial processing have been listed, the review has been made of the most widespread methods of study of coals mechanical durability and the equipment used for these purposes. The main advantages and disadvantages have been summarized of these methods, as well as their relationship. The factors have been Indicated tinfluencing the mechanical strength of coal. The expediency of using existing methods from the point of view of informativeness for thesphere of its application has been estimated. The methods common in the coal processing industry are considered in more detail. Keywords: coal, solid fuel mining, mechanical strength, determination methods, influencing factors, grinding strength, crushing index. Corresponding author V.V. Koval, e-mail: [email protected]


2020 ◽  
Vol 15 ◽  

This paper presents the results of practical mechanical tests of motor oils, their specifications and characteristics and the effect of their physical and chemical properties on the performance of the engine. The performance of the engine has a strong relation with the engine oil type and efficiency. The degree of stability of oils properties is very important because if oil or lubricants lose their properties, mechanical and chemical excessive corrosion of the motor metals may occur. Consequently, damage occurs to one or more parts of the engine, thereby the system is breaking down where the cost of downtime is too expensive. It has been found that a higher viscosity value is not the optimum as it increases temperature and energy consumption due to frictional losses. The values required for viscosity is the ideals that gives the stable results regardless temperature variations under any conditions of operation, at which the power losses are minimal and the fuel economy is optimal.


2020 ◽  
Vol 992 ◽  
pp. 253-258
Author(s):  
M.P. Lebedev ◽  
V.N. Tagrov ◽  
E.S. Lukin

The article deals with the manufacture of modern structural ceramic materials from clay and loam deposits of the Republic of Sakha (Yakutia). The importance and relevance of the development of the production of building materials from local raw materials is emphasized, since this will certainly affect the effectiveness of the construction complex as a whole. The successful development of the construction complex is capable of not only stimulating growth in all sectors of the economy, but also contributes to solving the most pressing social problems. Today, Yakutia has huge reserves of mineral raw materials for the production of a wide range of building materials and products. Of practical interest are wall materials made from clay soils. Given the features of the region’s raw material base, this work focuses on additional processing of traditional material. Controlling the complex physicochemical and structural-mechanical transformations that occur during heat treatment, a methodology has been developed for creating a composite material that will allow competitive innovative materials with enhanced strength properties to be produced with a reinforcing element with a glassy phase matrix of mullite crystals. The fabricated samples have a wide range of physical and mechanical properties and allow using it as a high-quality structural building ceramics, as well as industrial floor technical tile.


Sign in / Sign up

Export Citation Format

Share Document