scholarly journals Effect of Ultrasound on the Oxidative Copper Leaching from Chalcopyrite in Acidic Ferric Sulfate Media

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 633
Author(s):  
Jingxiu Wang ◽  
Fariborz Faraji ◽  
Ahmad Ghahreman

The objective of this study is to compare the reaction kinetics of copper leaching from chalcopyrite in acidic ferric sulfate media with (UAL) and without (non-UAL) ultrasound assistance. Four leaching parameters were evaluated and optimized. The parameter with the strongest effect was temperature, followed by ultrasonic power, the solid-to-liquid ratio (S/L), and acid concentration. Copper recovery showed an increase with rising temperatures in both systems. Ultrasonic power had a positive effect on copper leaching, but no significant difference was found among various power amplitudes. Copper extraction increased with decreasing S/L. At 0.1% S/L, the UAL leaching rate was double the non-UAL leaching rate. In both systems, acid concentration had little effect on copper extraction. Under optimized conditions, 20% amplitude power, 1% S/L, 0.5 M acid, and 80 °C leaching temperature, copper extraction was 50.4% and 57.5% in the non-UAL and UAL treatments, respectively. Ultrasonic waves enhanced the leaching rate, shortened the reaction time, and reduced acid consumption. Analysis of the rate-controlling step using a shrinking core model showed that leaching occurs after diffusion through the product layer but also chemical controlled in both non-UAL and UAL systems. The leaching mechanism was confirmed by characterizing the chalcopyrite and leached residue with X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy.

2009 ◽  
Vol 71-73 ◽  
pp. 409-412
Author(s):  
Wen Qing Qin ◽  
Yan Sheng Zhang ◽  
Shi Jie Zhen ◽  
Jun Wang ◽  
Jian Wen Zhang ◽  
...  

The effects of several variables on the column bioleaching of copper sulphide ore have been investigated. The copper ore contained chalcopyrite as the main sulfide minerals and bornite and chalcocite as the minor minerals. The experiment was carried out using bench-scale column leach reactors designed in Key Lab of Biometallurgy of Ministry of Education, which were inoculated with the pure mesophile bacteria (Acidithiobacillus ferrooxidans) and thermophile bacteria (Sulfobacillus), respectively, and the mixed bacteria which contain both iron- and sulfur-oxidizing bacteria. The results show that the mixed cultures were more efficient than the pure cultures alone and the maximum copper recovery 53.64% was achieved using the mixed cultures after 85 days. The leaching rate of chalcopyrite tended to increase with the increased dissolved ferric iron concentration. The effect of particle size on the rate of the copper leaching was also investigated, and it was shown that the copper bioleaching rate decreases as the amount of fines increase, which limits the permeability, thus decreases leaching rate. Jarosite and elemental sulphur formed in the column were characterized by the X-ray and EDS.


2017 ◽  
Vol 70 (1) ◽  
pp. 26
Author(s):  
Rachel S. Brokenshire ◽  
Anthony Somers ◽  
Miao Chen ◽  
Angel A. J. Torriero

An experimental study on copper leaching from Cu1.85S thin films is presented, wherein copper extraction is quantitatively evaluated by changes in film thickness measured by white light interferometric profilometry. Changes in the film morphology and elemental composition, as assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, are used to confirm that the loss in film thickness is due to changes in the copper content and that the resultant film species is consistent with the mechanism of copper dissolution. The Cu1.85S thin films were synthesized by chemical bath deposition. The leaching behaviour of copper from the films was investigated in acidic ferric sulfate media at pHs 1, 2, and 3, and pH 1 at redox potentials of ~350–650 mV versus Ag/AgCl in 3 M KCl. The changes in the film thickness and copper sulfur ratio were shown to reflect copper dissolution behaviour from chalcocite. Leaching of the Cu1.85S films demonstrated a greater decrease in film thickness as pH decreased. In addition comparison of the order of reaction as a function of proton concentration in non-oxidative dissolution of Cu1.85S (0.06) and as a function of iron(iii) concentration in ferric oxidation of Cu1.85S (0.40) shows that the proton dissolution reaction is negligible. Leaching of the Cu1.85S films at redox potentials of up to ~476.4 mV versus Ag/AgCl in 3 M KCl produced covellite and demonstrated greater decreases in film thickness with increases in the redox potential. Leaching of the films above ~476.4 mV resulted in the formation of spionkopite and demonstrated a much lesser decrease in film thickness. These results are consistent with Eh-pH diagrams for the Cu–S–H2O system.


2009 ◽  
Vol 71-73 ◽  
pp. 353-356
Author(s):  
Seong Jin Joe ◽  
Tadashi Chida ◽  
Masatoshi Sakoda ◽  
Hidekatsu Nakamura ◽  
Muneyuki Tamura ◽  
...  

This study reports the effect of sulfuric acid concentration on chalcopyrite chemical leaching in very simple H2SO4 solution systems ranging from 23g/L to 30g/L, with 2.5% chalcopyrite concentrate at 30°C. Copper extraction from chalcopyrite increases with an increase in sulfuric acid concentration, e.g. 86%, 90% and 92% after 96 days at 23g/L, 25/L and 27g/L H2SO4 solution respectively. Sulfur element formed on the surface of chalcopyrite was very porous as the result of an electron probe microanalyzer (EPMA). Copper extraction, however, leveled out at 35% after 20 days when the sulfuric acid concentration was higher than 28g/L on 25g/L of chalcopyrite concentrate. Sulfur element was detected by X-ray analysis as only a leaching reaction product. The passivation may be caused by thick elemental surface formed on the surface of chalcopyrite.


2013 ◽  
Vol 825 ◽  
pp. 318-321 ◽  
Author(s):  
Gang Zou ◽  
Zeng Ling Wu ◽  
Xiao Kang Lai ◽  
Lai Chang Zou ◽  
Ren Man Ruan ◽  
...  

This study is prompted by the high leaching efficiency of Zijinshan copper bio-heap leaching industrial plant. Bioleaching columns with 100 mm diameter and 1 m height were used to investigate copper bioleaching at different operating conditions. Elevated temperature, high total iron concentration and high acidity significantly increased copper leaching rate as determined by solution and residue assays. At 60 °C with 50 g/L iron (initial Fe3+/Fe2+ gram ratio 2.5), pH 1.0 and no aeration, copper extraction was achieved 90% after 60 days. However, at 30°C, 5 g/L total Fe, pH 1.5 and no aeration, copper extraction reached 80% and 85% after 90 and 200 days, respectively. Real-time PCR assay showed that only 105 cells/ml and 2×105 cells/g are in solution and on the ore surface at the condition of 60 °C 50 g/L iron and pH 1.0, respectively. In addition, a similar leaching rate was observed in the tests with and without inoculation. The column without inoculation was directly irrigated with acid mine drainage (AMD). Our results indicate high copper leaching efficiency at extreme conditions for mineral oxidizing bacteria. Inoculation and aeration are not necessary in Zijinshan copper mine bio-heap leaching process.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1200
Author(s):  
Imran Hasan ◽  
Akshara Bassi ◽  
Khadijah H. Alharbi ◽  
Ibtisam I. BinSharfan ◽  
Rais Ahmad Khan ◽  
...  

Statistics show that more than 700 thousand tons of dye are produced annually across the globe. Around 10–20% of this is used in industrial processes such as printing and dyeing, while about 50% of the dye produced is discharged into the environment without proper physicochemical treatment. Even trace amounts of dye in water can reduce oxygen solubility and have carcinogenic, mutagenic, and toxic effects on aquatic organisms. Therefore, before dye-containing wastewater is discharged into the environment, it must be properly treated. The present study investigates the green synthesis of nickel ferrite NiFe2O4 (NIFE) spinel magnetic nanoparticles (MNPs) via chemical coprecipitation of a solution of Ni2+/Fe3+ in the presence of a biopolymer blend of chitosan (CT) and ascorbic acid (AS). The magnetic nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray analysis (SEM-EDX), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), and vibrating-sample magnetometry (VSM). The material was further explored as a catalyst for the photocatalytic degradation of malachite green (MG) under visible light irradiation coupled with ultrasonic waves. The combination of 90 min of visible solar light irradiation with 6.35 W·mL−1 ultrasonic power at pH 8 resulted in 99% of the photocatalytic efficiency of chitosan-ascorbic acid@NIFE (CTAS@NIFE) catalyst for 70 mg·L−1 MG. The quenching of the photocatalytic efficiency from 98% to 64% in the presence of isopropyl alcohol (IPA) suggested the involvement of hydroxy (•OH) radicals in the mineralization process of MG. The high regression coefficients (R2) of 0.99 for 35, 55, and 70 mg·L−1 MG indicated the sonophotocatalysis of MG by CTAS@NIFE was best defined by a pseudo first-order kinetic model. The mechanism involves the adsorption of MG on the catalyst surface in the first step and thereby mineralization of the MG by the generated hydroxyl radicals (•OH) under the influence of visible radiation coupled with 6.34 W·mL−1 ultrasonic power. In the present study the application of photodegradation process with sonochemistry results in 99% of MG mineralization without effecting the material structure unlike happens in the case adsorption process. So, the secondary pollution (generally happens in case of adsorption) can be avoided by reusing the spent material for another application instead of disposing it. Thus, the ecofriendly synthesis protocol, ease in design of experimentation like use of solar irradiation instead of electric power lamps, reusability and high efficiency of the material suggested the study to be potentially economical for industrial development at pilot scale towards wastewater remediation.


2021 ◽  
Vol 36 (1) ◽  
pp. 35-42
Author(s):  
Shivang Bhaskar ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pimecrolimus Form B has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Pimecrolimus crystallizes in the space group P21 (#4) with a = 15.28864(7), b = 13.31111(4), c = 10.95529(5) Å, β = 96.1542(3)°, V = 2216.649(9) Å3, and Z = 2. Although there are an intramolecular six-ring hydrogen bond and some larger chain and ring patterns, the crystal structure is dominated by van der Waals interactions. There is a significant difference between the conformation of the Rietveld-refined and the DFT-optimized structures in one portion of the macrocyclic ring. Although weak, intermolecular interactions are apparently important in determining the solid-state conformation. The powder pattern is included in the Powder Diffraction File™ (PDF®) as entry 00-066-1619. This study provides the atomic coordinates to be added to the PDF entry.


2021 ◽  
Vol 9 (6) ◽  
pp. 63
Author(s):  
Payam Farzad ◽  
Ted Lundgren ◽  
Adel Al-Asfour ◽  
Lars Andersson ◽  
Christer Dahlin

This study was undertaken to investigate the integration of titanium micro-implants installed in conjunction with previously dentin-grafted areas and to study the morphological appearance, mineral content, and healing pattern of xenogenic EDTA-conditioned dentin blocks and granules grafted to cavities in the tibial bone of rabbits. Demineralized and non-demineralized dentin blocks and granules from human premolars were implanted into cavities prepared on the lateral aspects of the tibias of rabbits. After a healing period of six months, micro-implants were installed at each surgical site. Histological examinations were carried out after 24 weeks. Characterization of the EDTA-conditioned dentin blocks was performed by means of light microscopy, dental X-rays, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). No implants were found to be integrated in direct contact with the dentin particles or blocks. On the EDTA-conditioned dentin surface, the organic marker elements C and N dominated, as revealed by EDX. The hydroxyapatite constituents Ca and P were almost absent on the dentin surface. No statistically significant difference was observed between the EDTA-conditioned and non-demineralized dentin, as revealed by BIC and BA. The bone-inductive capacity of the dentin material seemed limited, although demineralization by means of EDTA indicated higher BIC and BA values in conjunction with the installed implants in the area. A 12 h EDTA treatment did not fully decalcify the grafts, as revealed by X-ray analysis.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 230
Author(s):  
Pengcheng Ma ◽  
Hongying Yang ◽  
Zuochun Luan ◽  
Qifei Sun ◽  
Auwalu Ali ◽  
...  

Bacteria–mineral contact and noncontact leaching models coexist in the bioleaching process. In the present paper, dialysis bags were used to study the bioleaching process by separating the bacteria from the mineral, and the reasons for chalcopyrite surface passivation were discussed. The results show that the copper leaching efficiency of the bacteria–mineral contact model was higher than that of the bacteria–mineral noncontact model. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) were used to discover that the leaching process led to the formation of a sulfur film to inhibit the diffusion of reactive ions. In addition, the deposited jarosite on chalcopyrite surface was crystallized by the hydrolysis of the excess Fe3+ ions. The depositions passivated the chalcopyrite leaching process. The crystallized jarosite in the bacteria EPS layer belonged to bacteria–mineral contact leaching system, while that in the sulfur films belonged to the bacteria–mineral noncontact system.


2020 ◽  
Vol 496 (3) ◽  
pp. 3796-3807
Author(s):  
A Saxena ◽  
L Pentericci ◽  
D Schaerer ◽  
R Schneider ◽  
R Amorin ◽  
...  

ABSTRACT We explore X-ray emission from a sample of 18 He ii λ1640 emitting star-forming galaxies at z ∼ 2.3–3.6 from the VANDELS survey in the Chandra Deep Field South, to set constraints on the role of X-ray sources in powering the He ii emission. We find that 4 He ii emitters have tentative detections with S/N ∼ 2 and have X-ray luminosities, LX = 1.5−4.9 × 1041 erg s−1. The stacked luminosity of all 18 He ii emitters is 2.6 × 1041 erg s−1, and that of a subset of 13 narrow He ii emitters (FHWM(He ii) < 1000 km s−1) is 3.1 × 1041 erg s−1. We also measure stacked LX for non-He ii emitters through bootstrapping of matched samples, and find LX = 2.5 × 1041 erg s−1, which is not significantly different from LX measured for He ii emitters. The LX per star formation rate for He ii emitters (log (LX/SFR) ∼ 40.0) and non-emitters (log (LX/SFR) ∼ 39.9) are also comparable and in line with the redshift evolution and metallicity dependence predicted by models. Due to the non-significant difference between the X-ray emission from galaxies with and without He ii, we conclude that X-ray binaries or weak or obscured active galactic nuclei are unlikely to be the dominant producers of He ii ionizing photons in VANDELS star-forming galaxies at z ∼ 3. Given the comparable physical properties of both He ii emitters and non-emitters reported previously, alternative He ii ionizing mechanisms such as localized low-metallicity stellar populations, Pop-III stars, etc. may need to be explored.


2018 ◽  
Vol 36 (5) ◽  
pp. 436-444 ◽  
Author(s):  
Xue Zhang ◽  
Hengxiang Li ◽  
Qing Cao ◽  
Li’e Jin ◽  
Fumeng Wang

The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.


Sign in / Sign up

Export Citation Format

Share Document