scholarly journals Development of Mine Soils in a Chronosequence of Forestry-Reclaimed Sites in Eastern Kentucky

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kenton L. Sena ◽  
Kevin M. Yeager ◽  
Christopher D. Barton ◽  
John M. Lhotka ◽  
William E. Bond ◽  
...  

Surface mining for coal has contributed to widespread deforestation and soil loss in coal mining regions around the world, and particularly in Appalachia, USA. Mined land reforestation is of interest in this and other regions where forests are the dominant pre-mining land use. This study evaluated mine soil development on surface-mined sites reforested according to the Forestry Reclamation Approach, representing a chronosequence of time ranging from 0 to 19 years after reclamation. Soils were sampled in depth increments to 50 cm and analyzed for a suite of soil physical and chemical characteristics. Overall, soil fines (silt + clay) tended to increase over time since reclamation (17% silt at year 0 increasing to 35% at year 11; 3.2% clay at year 0 increasing to 5.7% at year 14) while concentrations of metals (e.g., Al, Mg, Mn, Na) demonstrated varied relationships with time since reclamation. Concentrations of organic carbon (OC) tended to increase with time (0.9% OC at year 0 increasing to 2.3% at year 14), and were most enriched in near-surface soils. Some soil characteristics (e.g., Na, OC, Ca) demonstrated patterns of increasing similarity to the forest control, while others were distinct from the forest control throughout the chronosequence (e.g., Al, clay, Mn, gravel). Future surveys of these soils over time will elucidate longer-term patterns in soil development, and better characterize the time scales over which these soils might be expected to approximate forest soil conditions.

Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 780 ◽  
Author(s):  
Kenton Sena ◽  
Carmen Agouridis ◽  
Jarrod Miller ◽  
Chris Barton

Surface mining for coal (or other mineral resources) is a major driver of land-use change around the world and especially in the Appalachian region of the United States. Intentional and well-informed reclamation of surface-mined land is critical for the restoration of healthy ecosystems on these disturbed sites. In Appalachia, the pre-mining land cover is predominately mixed hardwood forest, with rich species diversity. In recent years, Appalachian mine reforestation has become an issue of concern, prompting the development of the Forestry Reclamation Approach, a series of mine reforestation recommendations. One of these recommendations is to use the best available soil substitute; however, the characteristics of the “best” soil substitute have been an issue. This study was initiated to compare the suitability of several types of mine spoil common in the Appalachian region: brown sandstone (Brown), gray sandstone (Gray), mixed spoils (Mixed), and shale (Shale). Experimental plots were established in 2007 with each spoil type replicated three times. These plots were planted with a mix of native hardwood species. Ten years after plot construction and planting, tree growth and canopy cover were highest in Brown, followed by Shale, Mixed, and Gray. Soil conditions (particularly pH) in Brown and Shale were more favorable for native tree growth than Mixed or Gray, largely explaining these differences in tree growth and canopy cover. However, soil chemistry did not clearly explain differences in tree growth between Brown and Shale. These differences were more likely related to differences in near-surface soil temperature, which is related to soil color and available shade.


2021 ◽  
Vol 13 (7) ◽  
pp. 3617
Author(s):  
Agnieszka Medyńska-Juraszek ◽  
Agnieszka Latawiec ◽  
Jolanta Królczyk ◽  
Adam Bogacz ◽  
Dorota Kawałko ◽  
...  

Biochar application is reported as a method for improving physical and chemical soil properties, with a still questionable impact on the crop yields and quality. Plant productivity can be affected by biochar properties and soil conditions. High efficiency of biochar application was reported many times for plant cultivation in tropical and arid climates; however, the knowledge of how the biochar affects soils in temperate climate zones exhibiting different properties is still limited. Therefore, a three-year-long field experiment was conducted on a loamy Haplic Luvisol, a common arable soil in Central Europe, to extend the laboratory-scale experiments on biochar effectiveness. A low-temperature pinewood biochar was applied at the rate of 50 t h−1, and maize was selected as a tested crop. Biochar application did not significantly impact the chemical soil properties and fertility of tested soil. However, biochar improved soil physical properties and water retention, reducing plant water stress during hot dry summers, and thus resulting in better maize growth and higher yields. Limited influence of the low-temperature biochar on soil properties suggests the crucial importance of biochar-production technology and biochar properties on the effectiveness and validity of its application in agriculture.


Author(s):  
Vladimir I. Golik ◽  
Maria Yu. Liskova ◽  
Yadviga G. Nebylova ◽  
Chainesh B. Kongar-Syuryun

The article is devoted to minimizing the negative impact of mining on the water resources of the mining regions. An assessment is made of leaching technologies with the involvement of non-conventional reserves for traditional methods of mining, reducing costs and lowering the level of environmental impact, including water resources. A reference is given on the use of leaching technologies for the development of natural and technogenic deposits in Russia. The mechanism of contamination of water resources with reagents and products of ore mining and processing is described. The typification of the processes of water migration of substances and components of underground leaching solutions is proposed. The zones of interaction between mineral deposits and water resources are differentiated. Fundamental differences of technology are formulated by the criterion of impact on water resources. An example of preventing the mixing of clean water and industrial effluents by creating a barrier in practice of a mining enterprise is given. It is concluded that the use of technologies with leaching of metals from ores at the place of their localization is promising


2011 ◽  
Vol 50 (9) ◽  
pp. 1872-1883 ◽  
Author(s):  
Winston T. L. Chow ◽  
Bohumil M. Svoma

AbstractUrbanization affects near-surface climates by increasing city temperatures relative to rural temperatures [i.e., the urban heat island (UHI) effect]. This effect is usually measured as the relative temperature difference between urban areas and a rural location. Use of this measure is potentially problematic, however, mainly because of unclear “rural” definitions across different cities. An alternative metric is proposed—surface temperature cooling/warming rates—that directly measures how variations in land-use and land cover (LULC) affect temperatures for a specific urban area. In this study, the impact of local-scale (<1 km2), historical LULC change was examined on near-surface nocturnal meteorological station temperatures sited within metropolitan Phoenix, Arizona, for 1) urban versus rural areas, 2) areas that underwent rural-to-urban transition over a 20-yr period, and 3) different seasons. Temperature data were analyzed during ideal synoptic conditions of clear and calm weather that do not inhibit surface cooling and that also qualified with respect to measured near-surface wind impacts. Results indicated that 1) urban areas generally observed lower cooling-rate magnitudes than did rural areas, 2) urbanization significantly reduced cooling rates over time, and 3) mean cooling-rate magnitudes were typically larger in summer than in winter. Significant variations in mean nocturnal urban wind speeds were also observed over time, suggesting a possible UHI-induced circulation system that may have influenced local-scale station cooling rates.


2006 ◽  
Vol 21 (1) ◽  
pp. 15-25 ◽  
Author(s):  
J.L. Pikul ◽  
R.C. Schwartz ◽  
J.G. Benjamin ◽  
R.L. Baumhardt ◽  
S. Merrill

AbstractAgricultural systems produce both detrimental and beneficial effects on soil quality (SQ). We compared soil physical properties of long-term conventional (CON) and alternative (ALT) cropping systems near Akron, Colorado (CO); Brookings, South Dakota (SD); Bushland, Texas (TX); Fargo, North Dakota (ND); Mandan (ND); Mead, Nebraska (NE); Sidney, Montana (MT); and Swift Current, Saskatchewan (SK), Canada. Objectives were to quantify the changes in soil physical attributes in cropping systems and assess the potential of individual soil attributes as sensitive indicators of change in SQ. Soil samples were collected three times per year from each treatment at each site for one rotation cycle (4 years at Brookings and Mead). Water infiltration rates were measured. Soil bulk density (BD) and gravimetric water were measured at 0–7.5, 7.5–15, and 15–30 cm depth increments and water-filled pore space ratio (WFPS) was calculated. At six locations, a rotary sieve was used to separate soil (top 5 cm) into six aggregate size groups and calculate mean weight diameter (MWD) of dry aggregates. Under the CON system at Brookings, dry aggregates (>19 mm) abraded into the smallest size class (<0.4 mm) on sieving. In contrast, the large aggregates from the ALT system abraded into size classes between 2 and 6 mm. Dry aggregate size distribution (DASD) shows promise as an indicator of SQ related to susceptibility of soil to wind erosion. Aggregates from CON were least stable in water. Soil C was greater under ALT than CON for both Brookings and Mead. At other locations, MWD of aggregates under continuous crop or no tillage (ALT systems) was greater than MWD under CON. There was no crop system effect on water infiltration rates for locations having the same tillage within cropping system. Tillage resulted in increased, decreased, or unchanged near-surface BD. Because there was significant temporal variation in water infiltration, MWD, and BD, conclusions based on a single point-in-time observation should be avoided. Elevated WFPS at Fargo, Brookings, and Mead may have resulted in anaerobic soil conditions during a portion of the year. Repeated measurements of WFPS or DASD revealed important temporal characteristics of SQ that could be used to judge soil condition as affected by management.


2018 ◽  
Vol 2 (suppl_1) ◽  
pp. 540-540
Author(s):  
S Fashaw ◽  
L Chisholm ◽  
V Mor ◽  
K Thomas ◽  
A Liu ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1101
Author(s):  
William A. Dunstan ◽  
Kay Howard ◽  
Andrew Grigg ◽  
Christopher Shaw ◽  
Treena I. Burgess ◽  
...  

While eradication from haul roads was achieved, more work is required to eradicate P. cinnamomi from stockpiles and bunds. We can now implement different management strategies to the construction of bunds and stockpiles to facilitate eradication. Infestation by Phytophthora cinnamomi results in large financial and management constraints to environmental managers. This pathogen was considered impossible to eradicate until recent success with treatments including host removal, herbicide and fungicide application, soil fumigation and physical root barriers. We investigated the most benign of these treatments; keeping the area devoid of living host material. In a Western Australian mine site within a Mediterranean climate, haul roads, stockpiles and roadside bunds had P. cinnamomi colonised Pinus stem plugs buried at multiple depths. Over time, we examined the effects of soil moisture and temperature in different soil conditions and types to compare the recovery of the pathogen. Results: Within 12 months, the pathogen could not be recovered from the haul roads. In the stockpiles, depth produced significantly different results. In 3 of the 4 sites, the pathogen was not recovered at 10 cm after 20 months. By 12 months, at 50 cm, there was an 80% reduction in recovery, but only one stockpile had no recovery from 50 cm, which occurred by 36 months. Bunds were up to 1.75 m high and had variable results for plugs buried at 30 cm, influenced by height, the types of soils and shading. One of the smallest bunds was the only bund where the pathogen was not recoverable (by 22 months). This study provides strong support for using a fallow period to reduce or eliminate P. cinnamomi inoculum.


2012 ◽  
Vol 65 (4) ◽  
pp. 713-720 ◽  
Author(s):  
Ying-Hua Li ◽  
Hai-Bo Li ◽  
Jing Pan ◽  
Xin Wang ◽  
Tie-Heng Sun

This study was to investigate domestic treatment efficiency of a subsurface wastewater infiltration (SWI) system over time. The performances of a young SWI system (in Shenyang University, China, fully operated for one year) and a mature SWI system (in Shenyang Normal University, China, fully operated for seven years) under the same operation mode were contrasted through field-scale experiments for one year. The performance assessment for these systems is based on physical and chemical parameters collected. The removal efficiencies within the young system were relatively high if compared with the mature one: for biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 95.0, 89.1, 98.1, 87.6 and 98.4%, respectively. However, the removal efficiencies decreased over time. The mean removal efficiencies for the mature SWI system were as follows: BOD (89.6%), COD (87.2%), SS (82.6%), NH3-N (69.1%) and TP (74.4%). The results indicate that the mature SWI system successfully removed traditional pollutants such as BOD from domestic wastewater. However, the nutrient reduction efficiencies (including NH3-N and TP) decreased after seven years of operation of the mature SWI system. Meanwhile, the SWI system did not decrease the receiving surface water quality.


Botany ◽  
2017 ◽  
Vol 95 (7) ◽  
pp. 685-695 ◽  
Author(s):  
Simon W. Bockstette ◽  
Bradley D. Pinno ◽  
Miles F. Dyck ◽  
Simon M. Landhäusser

Restricted rooting space in response to soil compaction and belowground competition with herbaceous plants are two main limiting factors for successful reforestation after surface mining. Fine-textured, nutrient-rich soils with adequate soil moisture are particularly susceptible to both of these concerns and while there are recognized ways to manage competition, attempts to alleviate soil compaction through mechanical means have produced varying results. While roots of some herbaceous plants may penetrate compacted soil layers, possibly offering an alternative means to overcome physical restrictions, these potential benefits need to be weighed against negative effects from competition with planted trees. We examined the individual and combined impact of soil decompaction (deep tillage) and management of competing vegetation (herbicide) on soil properties, resource availability, and above- and below-ground growth of aspen (Populus tremuloides Michx.) seedlings on a reconstructed mine soil affected by severe subsoil compaction. Our findings suggest that although deep tillage reduced bulk density, this did not increase resource availability and had limited effect on seedling growth. In contrast, competition with smooth brome grass (Bromus inermis Leyss.) drastically reduced aspen belowground growth because the grass rapidly occupied available rooting space, while simultaneously lowering the availability of water and nutrients, in particular nitrogen.


Sign in / Sign up

Export Citation Format

Share Document