scholarly journals Strength and Ultrasonic Characteristics of Cemented Paste Backfill Incorporating Foaming Agent

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 681
Author(s):  
Xiaochuan Xu ◽  
Xiaogang Sun ◽  
Wei Yao ◽  
Pinqi Wu ◽  
Jingping Qiu ◽  
...  

This work is a systematic study of the strength and ultrasonic properties of cemented paste backfill incorporating a foaming agent, known as foam-cemented paste backfill (FCPB). Based on determining the optimal admixture contents (foaming stabilizer, thickening agent, and foaming agent), a series of uniaxial compressive strength (UCS) tests were conducted to determine the relationship between the UCS of FCPB and four influencing factors, i.e., cement–tailings ratio (CTR), solid content (SC), curing time (T), and foaming agent content (FC). To analyze the sensitivity of UCS to these four factors, grey relational analysis (GRA) was introduced. Moreover, UCS results were correlated with the corresponding ultrasonic pulse velocity (UPV) parameters. The results indicate that the optimal contents of foaming stabilizer, thickening agent and foaming agent are 0.5%, 0.6%, and 1%–3%, respectively. The UCS of FCPB exponentially increases with CTR and SC, while it logarithmically and linearly increases with T and FC, respectively. CTR has the most significant influence, followed by T, SC, and FC. There exists an evidently linear relationship between UPV and UCS of FCPB regardless of CTR, SC, T and FC. These results contribute to understanding the properties of hardened FCPB and to sound designs in practice.

Author(s):  
B. Wang ◽  
L. Li ◽  
Y. Yu ◽  
B. Huo ◽  
J. Liu

Cemented paste backfill (CPB) is prepared by mixing cementitious materials, tailings and water. Uniaxial compressive strength (UCS) is one of the most commonly used indicators for evaluating the mechanical performance of CPB. Ultrasonic pulse velocity (UPV) testing which is a non-destructive measurement, can also be applied to determine the mechanical properties of cement-based materials such as CPB. In order to study the failure mechanism of CPB,144 CPB samples prepared at different mass fraction and cement-tailing ratios were subjected to the UCS and UPV tests at 7,14 and 28 days of curing age. The effect of cement-tailing ratio and mass fraction on the UCS and UPV of CPB samples were obtained, the UCS values were correlated with the corresponding UPV data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the UCS data. The results show that the UCS and UPV values of CPB increased with cement-tailing ratio, mass fraction and curing time. Based on the experimental results, the damage constitutive equations and the damage evolution equations of different backfills were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. The results acquired by this paper provide a scientific basis for the rational strength design of backfill mine.


Ultrasonics ◽  
2014 ◽  
Vol 54 (5) ◽  
pp. 1386-1394 ◽  
Author(s):  
Tekin Yılmaz ◽  
Bayram Ercikdi ◽  
Kadir Karaman ◽  
Gökhan Külekçi

2021 ◽  
Vol 11 (9) ◽  
pp. 3747
Author(s):  
Leticia Presa ◽  
Jorge L. Costafreda ◽  
Domingo Alfonso Martín

This work aims to study the relationship between the compression resistance and velocity from ultrasonic pulses in samples of mortars with 25% of pozzolanic content. Pozzolanic cement is a low-priced sustainable material that can reduce costs and CO2 emissions that are produced in the manufacturing of cement from the calcination of calcium carbonate. Using ultrasonic pulse velocity (UPV) to estimate the compressive resistance of mortars with pozzolanic content reduces costs when evaluating the quality of structures built with this material since it is not required to perform an unconfined compression test. The objective of this study is to establish a correlation in order to estimate the compression resistance of this material from its ultrasonic pulse velocity. For this purpose, we studied a total of 16 cement samples, including those with additions of pozzolanic content with different compositions and a sample without any additions. The results obtained show the mentioned correlation, which establishes a basis for research with a higher number of samples to ascertain if it holds true at greater curing ages.


2018 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Belaribi Hassiba ◽  
Mellas Mekki ◽  
Rahmani Fraid

The paper analyses the effects of high temperatures on the concrete residual strength using ultrasonic velocity (UPV). An experimental investigation was conducted to study the relationship between UPV residual data and compressive strength of concrete with different mixture proportions, cubic specimens with water-cement ratio of 0.35. They were heated in an electric furnace at temperatures ranging from 200°C to 600°C. In this experiment a comparison was made between the four groups which include two types of fibers steel 0,19%, 0,25% and 0,5%, polypropylene: 0,05%, 0,11% 0,16 % by volume. Cube specimens were tested in order to determine ultrasonic velocity. The compressive strength was tested too. According to the results, relations were established between ultrasonic velocity in the specimens and the compressive strength at different temperature and the range of the velocity of the waves were also determined for this kind of concrete. Result of the test showed that UPV test can be successfully used in order to verify the consistency of structures damaged by fire.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


Sign in / Sign up

Export Citation Format

Share Document