scholarly journals Age and Geochemistry of Late Jurassic Mafic Volcanic Rocks in the Northwestern Erguna Block, Northeast China

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1010
Author(s):  
Yan Li ◽  
Feng-Jun Nie ◽  
Zhao-Bin Yan

The northwestern Erguna Block, where a wide range of volcanic rocks are present, provides one of the foremost locations to investigate Mesozoic Paleo-Pacific and Mongol-Okhotsk subduction. The identification and study of Late Jurassic mafic volcanic rocks in the Badaguan area of northwestern Erguna is of particular significance for the investigation of volcanic magma sources and their compositional evolution. Detailed petrological, geochemical, and zircon U-Pb dating suggests that the Late Jurassic mafic volcanic rocks formed at 157–161 Ma. Furthermore, the geochemical signatures of these mafic volcanic rocks indicate that they are calc-alkaline or transitional series with weak peraluminous characteristics. The rocks have a strong MgO, Al2O3, and total alkali content, and a SiO2 content of 53.55–63.68 wt %; they are enriched in Rb, Th, U, K, and light rare-earth elements (LREE), and depleted in high-field-strength elements (HFSE), similar to igneous rocks in subduction zones. These characteristics indicate that the Late Jurassic mafic volcanic rocks in the Badaguan area may be derived from the partial melting of the lithospheric mantle as it was metasomatized by subduction-related fluid and the possible incorporation of some subducting sediments. Subsequently, the fractional crystallization of Fe and Ti oxides occurred during magmatic evolution. Combined with the regional geological data, it is inferred that the studied mafic volcanic rocks were formed by lithospheric extension after the closure of the Mongol-Okhotsk Ocean.

Author(s):  
Xiu Liu ◽  
Xinqi Yu ◽  
Pengju Li ◽  
Jun Hu ◽  
Mengyan Liu ◽  
...  

Yanshanian granitoids (178–120 Ma, Jurassic to Cretaceous), which intruded into Precambrian crystalline base- ment and Paleozoic strata, are widely distributed at the junction of the Zhejiang, Jiangxi and Anhui provinces (the ZGW region) in southern China, along with coeval volcanic rocks. This paper summarizes zircon U–Pb age data, geochemi- cal characteristics and Sr-Nd isotopic characteristics of the Late Jurassic to Middle Cretaceous granitoids and volcanic rocks from the ZGW region. We demonstrate that members of the Shiling rhyolite formed during two different periods of magmatic activity at 154.7 ± 2.5 Ma and 139–134 Ma and that igneous rocks from the different periods have distinct geochemical characteristics. Jurassic igneous rocks of the ZGW region have relatively low SiO2and high Al 2O3contents, and show enrichment of large ion lithophile elements (LILEs) and depletion of high field strength elements (HFSEs). They are strongly enriched in LREE and depleted in HREEs with weakly negative Eu anomalies and strongly negative Nb, Ta anomalies. Rb and Y concentrations follow the trends of I-type and S-type granites. By contrast, Cretaceous igneous rocks of this region are characterized by high SiO2and low Al2O3contents with negative Eu anomalies. They have typical wing- shaped rare earth element (REE) distribution patterns and show enrichment of Rb, Th, U, Nb, Ta and depletion of Ba, Sr, P and Ti. They have affinity to A-type peraluminous granites or highly-fractionated felsic rocks. Overall, the igneous rocks evolved from high-Sr low-Yb to low-Sr high-Yb, which might reflect the evolution of the tectonic setting from subduction to lithospheric extension/thinning, i. e., a transition from a continental margin subduction setting during the Late Jurassic to a within-plate extensional setting during the Early Cretaceous, at c. 142 ± 3 Ma. The repeated alternation between lava extrusion and extension and extensional fault kinematics in the late Mesozoic is related to the changes of direction and rate of plate movement of the Izanagi and Pacific plates.


2009 ◽  
Vol 60 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Zoltán Pécskay ◽  
Ioan Seghedi ◽  
Marinel Kovacs ◽  
Alexandru Szakács ◽  
Alexandrina Fülöp

Geochronology of the Neogene calc-alkaline intrusive magmatism in the "Subvolcanic Zone" of the Eastern Carpathians (Romania)The Poiana Botizei-Ţibleş-Toroiaga-Rodna-Bârgâu intrusive area (PBTTRB), northwest Romania, known as the "Subvolcanic Zone", is located between the Gutâi (NW) and Câlimani (SE) volcanic massifs. It consists of rocks displaying a wide range of compositions and textures: equigranular or porphyritic with holocrystalline groundmass (gabbro-diorites, diorites, monzodiorites and granodiorites), and/or porphyritic with fine holocrystalline or glassycryptocrystalline groundmass, similar with effusive rocks: basalts, basaltic andesites, andesites, dacites and rhyolites. The time-span of intrusive rocks emplacement is similar with the nearest calc-alkaline volcanic rocks from Gutâi (NW) and Câlimani (SE) massifs. They are represented by stocks, laccoliths, dykes and sills typical for an upper crustal intrusive environment. In the absence of biostratigraphic evidence, a comprehensive K-Ar study of intrusive rocks using whole rock samples, groundmass and monomineral fractions (biotite, hornblende) has been carried out in order to understand the magmatic evolution of the area. The oldest K-Ar ages recorded in the analysed rocks are close to 11.5 Ma and magmatism continued to develop until about 8.0 Ma. The inception of intrusion emplacement in the PBTTRB is coeval with intrusive activity spatially related to volcanism within the neighbouring Gutâi and Câlimani massifs. However, its culmination at ca. 8 Ma ago is younger than the interruption of this activity at ca. 9.2 Ma in Gutâi and Câlimani Mts where intrusive activity resumed for ca. 1 Myr. These circumstances strongly suggest that the geodynamic evolution of the area controlled the development of both volcanic and intrusive activity and their reciprocal relationships. The overall geological data suggest that in the PBTTRB intra-lithospheric transpressional-transtensional tectonic processes controlled the generation and emplacement of intrusive bodies between ca. 12-8 Ma.


2020 ◽  
Author(s):  
Simon Large ◽  
Yannick Buret ◽  
Tom Knott ◽  
Jamie Wilkinson

<p>The crustal-scale magmatic systems of Andean-style subduction zones produce thick volcanic deposits and abundant plutons emplaced into the upper crust. They can also result in the formation of spatially- and temporally-restricted, economically-important porphyry Cu deposits. Understanding the magmatic and tectonic processes acting within an arc segment, including changes in the fractionating assemblage, subduction angle, chemistry of slab-derived melts or water content, is essential to develop and refine quantitative models for the formation of these deposits. Specific geochemical signatures (e.g. elevated Sr/Y) are associated with magmas that source the metals and volatiles to form porphyry deposits based on empirical studies. However, it is unclear whether this geochemical signature is the result of geologically rapid processes resulting in sudden shifts in magma chemistry or whether they are the result of protracted changes within the crustal-scale magmatic system over extended timescales.</p><p>In this study we examine the magmatic evolution of the Rio Blanco-Los Bronces district, ~30 km northeast of Santiago, Chile, which is host to the Earth’s largest resource of Cu. Eocene to Early Miocene volcanic rocks were intruded by the Miocene San Francisco Batholith that, in turn, partially hosts intrusions related to the Late Miocene to Early Pliocene Rio Blanco-Los Bronces porphyry deposit cluster. We apply a combination of whole-rock and zircon geochemistry, isotopic tracing and LA-ICP-MS U-Pb geochronology to the intrusive rock suite of the district to provide temporally- constrained geochemical information over the entire duration of batholith assembly and ore formation.</p><p>U-Pb geochronology reveals incremental assembly of the San Francisco Batholith by individual magma batches over >13Myr (~17 – 4 Ma), with ore formation occurring in discrete pulses in the last 3 Myr before cessation of intrusive activity within the district. Temporally-resolved whole-rock major element chemistry shows that the progressively-emplaced magmas were not sourced from a common, continuously differentiating, lower crustal magma reservoir. Evolving trace element signatures over the recorded timescale indicate that magmas were sourced from progressively deeper fractional crystallisation reservoir(s) that exhibited increasing water contents. The geochemical evolution recorded over the entire investigated 13 Myr timescale could reflect geodynamic changes linked to the ingression of the subducting Juan Fernandez ridge from the north. However, within this continuous evolution, the most prominent geochemical shifts occur over a much shorter timescale of a few Myr, directly preceding economic ore-formation, implicating an additional mechanism for controlling the metallogenic potential of the magma source.</p><p> </p><p> </p><p> </p>


2005 ◽  
Vol 42 (7) ◽  
pp. 1389-1400 ◽  
Author(s):  
E H Brown ◽  
T J Lapen ◽  
R Mark Leckie ◽  
Isabella Premoli Silva ◽  
Davide Verga ◽  
...  

New ages of rocks in the San Juan Islands, northwest Washington, significantly change our understanding of the evolution of the San Juan Islands thrust system. Re-examination of foraminifera-bearing mudstones at Richardson on Lopez Island indicates a late Aptian (112–115 Ma), not late Albian (100 Ma) age as currently presented in the literature. The age brackets of thrusting, marked by these pre-thrusting mudstones and 84-Ma post-thrusting sedimentary rocks, span a much longer period than previously thought, diminishing controls on rates of displacement in the thrust system and the timing of regional deformation in western Washington. New 40Ar/39Ar plateau ages of phengite in blueschist-facies meta-volcanic rock, also at Richardson, are 124 ± 0.7 Ma (2σ, late Barremian). These blueschist-facies volcanic rocks are in fault contact with the fossiliferous mudstones. Therefore, the blueschist-facies metamorphism at Richardson, previously inferred to be associated with the thrusting, now appears to have occurred prior to thrusting. Further, the Ar ages demonstrate that blueschist-facies fabric formed earlier than the thrust event and is therefore not directly useful in analyzing the thrusting kinematics. The Richardson 40Ar/39Ar age is similar to isotopic ages found in the eastern San Juan Islands and in the Shuksan blueschist terrane in the northwest Cascades, and thus fits into an emerging regional age pattern of blueschist-facies metamorphism during Late Jurassic – Early Cretaceous (up to Barremian) but not late Albian – Cenomanian. If this pattern is more broadly confirmed for the San Juan Islands, all the blueschist-facies metamorphism can be regarded as having formed in subduction zones elsewhere along the continental margin rather than in the anomalous setting of an on-land thrust system, as in the San Juan Islands.


2018 ◽  
Author(s):  
David Fernández-Blanco

Orogenic plateaus have raised abundant attention amongst geoscientists during the last decades, offering unique opportunities to better understand the relationships between tectonics and climate, and their expression on the Earth’s surface.Orogenic plateau margins are key areas for understanding the mechanisms behind plateau (de)formation. Plateau margins are transitional areas between domains with contrasting relief and characteristics; the roughly flat elevated plateau interior, often with internally drained endorheic basins, and the external steep areas, deeply incised by high-discharge rivers. This thesis uses a wide range of structural and tectonic approaches to investigate the evolution of the southern margin of the Central Anatolian Plateau (CAP), studying an area between the plateau interior and the Cyprus arc. Several findings are presented here that constrain the evolution, timing and possible causes behind the development of this area, and thus that of the CAP. After peneplanation of the regional orogeny, abroad regional subsidence took place in Miocene times in the absence of major extensional faults, which led to the formation of a large basin in the northeast Mediterranean. Late Tortonian and younger contractional structures developed in the interior of the plateau, in its margin and offshore, and forced the inversion tectonics that fragmented the early Miocene basin into the different present-day domains. The tectonic evolution of the southern margin of the CAP can be explained based on the initiation of subduction in south Cyprus and subsequent thermo-mechanical behavior of this subduction zone and the evolving rheology of the Anatolian plate. The Cyprus slab retreat and posterior pull drove subsidence first by relatively minor stretching of the crust and then by its flexure. The growth by accretion and thickening of the upper plate, and that of the associated forearc basins system, caused by accreting sediments, led to rheological changes at the base of the crust that allowed thermal weakening, viscous deformation, driving subsequent surface uplift and raising the modern Taurus Mountains. This mechanism could be responsible for the uplifted plateau-like areas seen in other accretionary margins. ISBN: 978-90-9028673-0


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 103
Author(s):  
Nikolai Berdnikov ◽  
Victor Nevstruev ◽  
Pavel Kepezhinskas ◽  
Ivan Astapov ◽  
Natalia Konovalova

While gold partitioning into hydrothermal fluids responsible for the formation of porphyry and epithermal deposits is currently well understood, its behavior during the differentiation of metal-rich silicate melts is still subject of an intense scientific debate. Typically, gold is scavenged into sulfides during crustal fractionation of sulfur-rich mafic to intermediate magmas and development of native forms and alloys of this important precious metal in igneous rocks and associated ores are still poorly documented. We present new data on gold (Cu-Ag-Au, Ni-Cu-Zn-Ag-Au, Ti-Cu-Ag-Au, Ag-Au) alloys from iron oxide deposits in the Lesser Khingan Range (LKR) of the Russian Far East. Gold alloy particles are from 10 to 100 µm in size and irregular to spherical in shape. Gold spherules were formed through silicate-metal liquid immiscibility and then injected into fissures surrounding the ascending melt column, or emplaced through a volcanic eruption. Presence of globular (occasionally with meniscus-like textures) Cu-O micro-inclusions in Cu-Ag-Au spherules confirms their crystallization from a metal melt via extremely fast cooling. Irregularly shaped Cu-Ag-Au particles were formed through hydrothermal alteration of gold-bearing volcanic rocks and ores. Association of primarily liquid Cu-Ag-Au spherules with iron-oxide mineralization in the LKR indicates possible involvement of silicate-metallic immiscibility and explosive volcanism in the formation of the Andean-type iron oxide gold-copper (IOCG) and related copper-gold porphyry deposits in the deeper parts of sub-volcanic epithermal systems. Thus, formation of gold alloys in deep roots of arc volcanoes may serve as a precursor and an exploration guide for high-grade epithermal gold mineralization at shallow structural levels of hydrothermal-volcanic environments in subduction zones.


2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


1977 ◽  
Vol S7-XIX (6) ◽  
pp. 1233-1243 ◽  
Author(s):  
C. Dupuy ◽  
J. Dostal ◽  
J. Vernieres

Sign in / Sign up

Export Citation Format

Share Document