scholarly journals Archaeometric Analysis of the Objects from the Scala Santa (Holy Stairs) in the Crypt under the Piarist Church in Cracow (Poland)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1179
Author(s):  
Mariola Marszałek ◽  
Adam Gaweł ◽  
Karolina Pachuta ◽  
Eliza Buszko

Conservators extracted and preserved reliquaries hidden in the steps of the right flight of the Holy Stairs erected in the Piarist church crypt in Cracow (Poland). Three items from among 59 reliquaries were selected for specialist analyses: a framed, transparent cross containing a particle of the True Cross, and two opaque beads; an ornamented blue one without a hole and a drilled black one were analysed using non-destructive and non-invasive methods. The methods included scanning electron microscopy coupled with energy dispersive X-ray spectrometry, Raman microspectroscopy and X-ray diffractometry. The reliquary cross was found to be made of rock crystal and framed with an alloy of gold, silver and probably copper. The beads are made of glass; the blue bead represents forest plant-ash potash–lime glass and the black one, plant-ash soda–lime glass. Cobalt, probably along with copper, was used to produce the colour of the blue bead; manganese and iron ions were used to produce that of the black bead. Lead was present in both beads as one of the minor components and also as a component of corrosion products on their surfaces and probably also as part of the filler for the ornamentation of the blue bead. Nevertheless, it cannot be ruled out that the lead compounds were introduced intentionally to emphasize the bead ornamentation. The possible place and date of manufacture of the artefacts were also discussed.

2020 ◽  
Author(s):  
Iskender Akkurt ◽  
Kadir Gunoglu ◽  
Recep Kurtuluş ◽  
Taner Kavas

2018 ◽  
Vol 96 (7) ◽  
pp. 804-809 ◽  
Author(s):  
Harun Güney ◽  
Demet İskenderoğlu

The undoped and 1%, 2%, and 3% Cd-doped MgO nanostructures were grown by SILAR method on the soda lime glass substrate. X-ray diffractometer (XRD), ultraviolet–visible spectrometer, scanning electron microscope, photoluminescence (PL), and X-ray photoelectron spectroscopy measurements were taken to investigate Cd doping effects on the structural, optical, and morphological properties of MgO nanostructures. XRD measurements show that the samples have cubic structure and planes of (200), (220) of MgO and (111), (200), and (220) of CdO. It was observed that band gaps increase with rising Cd doping rate in MgO thin film. The surface morphology of samples demonstrates that MgO nanostructures have been affected by the Cd doping. PL measurements show that undoped and Cd-doped MgO thin films can radiate in the visible emission region.


1995 ◽  
Vol 90 ◽  
pp. 137-153 ◽  
Author(s):  
K. Demakopoulou ◽  
E. Mangou ◽  
R. E. Jones ◽  
E. Photos-Jones

Current technical interest in the nature of the black inlaid decoration on ancient metalware has stimulated an examination of some of the well-known bronze daggers, silver vessels, and other fragments, all with inlaid decoration and dating to the 16–14th centuries BC, from Mycenae, Prosymna, Dendra, Routsi, and Pylos. Results of non-destructive X-ray fluorescence analysis point to great versatility in working with copper (or bronze)–gold–silver alloys. The black inlaid decoration is usually copper/bronze–gold alloy with small quantities of silver. Four of the objects were also examined by X-ray radiography.


2014 ◽  
Vol 1004-1005 ◽  
pp. 774-777 ◽  
Author(s):  
Ji Wan Liu ◽  
Gui Lin Chen ◽  
Wei Feng Liu ◽  
Guo Shun Jiang ◽  
Chang Fei Zhu

A low-cost non-vacuum process for fabrication of Cu2SnSe3 film by sol-gel method and knife-coating process is described. First, a certain amount of Copper (I) chloride and tin (IV) tetrachloride was dissolve into the mixture of water and alcohol and then some Polyvinyl Pyrrolidone (PVP) was added to the solution to obtain based colloidal solution. Next, precursor thin layer was deposited by knife-blading technique on soda-lime glass (SLG). Finally, precursor layer was annealed at selenium flow atmosphere carried by Ar gas at 550oC. Through X-ray diffraction (XRD) and Raman spectra, it is found that pure Cu2SnSe3 film was prepared successfully. Scanning electron microscopy (SEM) and UV–vis–NIR absorbance spectroscopy were used to characterize its morphology and optical bandgap.


2006 ◽  
Vol 129 (3) ◽  
pp. 323-326
Author(s):  
Sachin S. Kulkarni ◽  
Jyoti S. Shirolikar ◽  
Neelkanth G. Dhere

Rapid thermal processing (RTP) provides a way to rapidly heat substrates to an elevated temperature to perform relatively short duration processes, typically less than 2–3min long. RTP can be utilized to minimize the process cycle time without compromising process uniformity, thus eliminating a bottleneck in CuIn1−xGaxSe2−ySy (CIGSS) module fabrication. Some approaches have been able to realize solar cells with conversion efficiencies close or equal to those for conventionally processed solar cells with similar device structures. A RTP reactor for preparation of CIGSS thin films on 10cm×10cm substrates has been designed, assembled, and tested at the Florida Solar Energy Center’s PV Materials Lab. This paper describes the synthesis and characterization of CIGSS thin-film solar cells by the RTP technique. Materials characterization of these films was done by scanning electron microscopy, x-ray energy dispersive spectroscopy, x-ray diffraction, Auger electron spectroscopy, electron probe microanalysis, and electrical characterization was done by current–voltage measurements on soda lime glass substrates by the RTP technique. Encouraging results were obtained during the first few experimental sets, demonstrating that reasonable solar cell efficiencies (up to 9%) can be achieved with relatively shorter cycle times, lower thermal budgets, and without using toxic gases.


2013 ◽  
Vol 716 ◽  
pp. 325-327
Author(s):  
Xiao Yan Dai ◽  
Cheng Wu Shi ◽  
Yan Ru Zhang ◽  
Min Yao

In this paper, CdTe thin films were deposited on soda-lime glass substrates using CdTe powder as a source by close-spaced sublimation at higher source temperature of 700°C. The influence of the deposition time and the source-substrate distance on the chemical composition, crystal phase, surface morphology and optical band gap of CdTe thin films was systemically investigated by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope and the ultraviolet-visible-near infrared absorption spectra, respectively. At the deposition time of 60 min and the source-substrate distance of 5 mm, the CdTe thin films had pyramid appearance with the grain size of 15 μm.


2012 ◽  
Vol 528 ◽  
pp. 214-218
Author(s):  
Han Bin Wang ◽  
Xi Jian Zhang ◽  
Qing Pu Wang ◽  
Xue Yan Zhang ◽  
Xiao Yu Liu

CIGS thin films were prepared by selenization of Cu-In-Ga-Se precursors, as a new method, the effects of selenization temperature on the properties of CIGS thin films were studied. First, Cu-In-Ga-Se precursors were deposited onto Mo-coated soda lime glass by evaporation and sputtering method. Then, precursors were selenized at various temperatures in N2 atmosphere for 120 min to form CIGS thin films. The degree of reaction and morphology of films as a function of selenization temperature were analyzed. By means of field emission scanning electron microscope (SEM) and X-ray diffraction (XRD), it was found that CIGS thin films selenized at 450°C exhibit chalcopyrite phase with preferred orientation along the (112) plane.


2008 ◽  
Vol 1123 ◽  
Author(s):  
Shou-Yi Kuo ◽  
Liann-Be Chang ◽  
Ming-Jer Jeng ◽  
Wei-Ting Lin ◽  
Yong-Tian Lu ◽  
...  

AbstractThis work reports on the fabrication and characterization of Mo thin films on soda-lime glass substrate grown by reactive RF magnetron sputtering. Film thickness was measured by x-ray step surface profiler. The structural properties and surface morphology were analyzed by x-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). Electrical properties were measured by four-point probe. It was found that the growth parameters, such as argon flow rate, RF power, film thickness, have significant influences on properties of Mo films. The strain on films revealed the complicated relationship with the working pressure, which might be associated with micro structures and impurities. In order to improve the adhesion and electricity, we adopted a two-pressure deposition scheme. The optimal thickness and sheet resistance are νm and 0.12 ω The mechanisms therein will be discussed in detail. Furthermore, we also investigated the diffusion property of Na ion of double Mo films sputtered on soda-lime glass. Our experimental results could lead to better understanding for improving further CIGS-based photovoltaic devices.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mila Andonova

AbstractThis study proposes non-destructive assessment instrumentation, the X-ray MicroCT scanning, to evaluate archaeological basketry remains prior to any destructive analysis. Three case studies are originating from two archaeological sites in Southeast Europe, with three different stages of preservation (poor, sufficient and very good). In addition, there are two preservation modes—charring and desiccation—along with two conservation situations: treated and untreated with conservation agent fragments. The three different scenarios were chosen to explore the potential range of X-ray MicroCT scanning technology when applied to monocotyledonous small-sized archaeological remains. It was proved that this non-invasive X-ray method is particularly suitable for the often-disadvantaged ancient basketry remains.


2016 ◽  
Vol 374 (6) ◽  
Author(s):  
Koen Janssens ◽  
Geert Van der Snickt ◽  
Frederik Vanmeert ◽  
Stijn Legrand ◽  
Gert Nuyts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document