scholarly journals Hydrodynamic and Flotation Kinetic Analysis of a Large Scale Mechanical Agitated Flotation Cell with the Typical Impeller and the Arc Impeller

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 79 ◽  
Author(s):  
Zhengchang Shen ◽  
Ming Zhang ◽  
Xuesai Fan ◽  
Shuaixing Shi ◽  
Dengfeng Han

The processing of low grade mineral ores using large scale flotation cells is obviously more advantageous than smaller-scale processing. Large-scale flotation cells have become increasingly important for effective volume scale-up. In this study, the latest and largest flotation cell in China, with an effective volume of 680 m3, is considered. Hydrodynamics and flotation kinetics analyses are conducted using computational fluid dynamics (CFD) simulation. It is demonstrated that the flotation cell with a typical impeller produces suitable hydrodynamics for mineral particles based on analysis of the flow pattern, gas dispersion and solid suspension. The performance of the large-scale flotation cell is studied using hydrodynamic performance parameters. The variation of the performance parameters, such as the power number (Np), the Froude number (Fr), the air flow number (Na), and so on, with the flotation cell volumes, followed trends similar to that of previous cells of a different size, which were proven to be effective for engineering applications. To decrease the detachment of mineral particles, a new type of impeller, for which the impeller plate is a hyperbolic curve, viz. an arc impeller, was developed. Compared with the typical impeller, the arc impeller expands and lifts the low circulating flow, thereby shortening the transportation distance of the mineral particles. The data indicates that kinetic eddy dissipation plays a key role in determining the collision kernel and collision probability profile. The newly designed arc impeller leads to a higher collision probability than the typical impeller, resulting in better flotation performance. This research should aid in the optimization of the structure of the 680 m3 flotation cell.

2013 ◽  
Vol 331 ◽  
pp. 200-204 ◽  
Author(s):  
Shuai Xing Shi ◽  
Yue Yu ◽  
Wen Wang Yang ◽  
Hong Xi Zhou

KYF flotation cell is one of the most widely used flotation cells in ore dressing in China. To optimize its structure parameters further, Particle Image Velocimetry (PIV) test system is set up to investigate the flow field in KYF flotation cell. The test is carried out under water condition, taking fluorescence sphere (51.7μm in diameter) as tracer particles of flow field, and three regions of flow field in KYF-0.2 flotation cell are determined as following: half of the whole tank, the region between the impeller and tank bottom, and the region in space between stator blades. Velocity vector diagrams of flow field in three regions are plotted. The results show that there are the upper and the lower flow circulations in flotation cell with dead area at the corner of tank bottom, and the smooth and steady flow in space between stator blades. All studies above strongly support the optimum design for large scale KYF flotation cell.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Jian Song ◽  
Chun-wei Gu

Energy shortage and environmental deterioration are two crucial issues that the developing world has to face. In order to solve these problems, conversion of low grade energy is attracting broad attention. Among all of the existing technologies, Organic Rankine Cycle (ORC) has been proven to be one of the most effective methods for the utilization of low grade heat sources. Turbine is a key component in ORC system and it plays an important role in system performance. Traditional turbine expanders, the axial flow turbine and the radial inflow turbine are typically selected in large scale ORC systems. However, in small and micro scale systems, traditional turbine expanders are not suitable due to large flow loss and high rotation speed. In this case, Tesla turbine allows a low-cost and reliable design for the organic expander that could be an attractive option for small scale ORC systems. A 1-D model of Tesla turbine is presented in this paper, which mainly focuses on the flow characteristics and the momentum transfer. This study improves the 1-D model, taking the nozzle limit expansion ratio into consideration, which is related to the installation angle of the nozzle and the specific heat ratio of the working fluid. The improved model is used to analyze Tesla turbine performance and predict turbine efficiency. Thermodynamic analysis is conducted for a small scale ORC system. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhongben Tang ◽  
Feng Lin ◽  
Jiarong Xiao ◽  
Xiaojun Du ◽  
Jian Zhang ◽  
...  

Primary pulmonary adenoid cystic carcinomas are salivary tumors that are low-grade malignant and prone to recurrence and metastasis. Surgery is currently the main treatment, but there is no standard with regard to postoperative adjuvant therapy. Adenoid cystic carcinoma is more sensitive to radiotherapy and patients benefit less from chemotherapy, but few studies have focused on targeted therapy, and their conclusions are inconsistent. With respect to primary pulmonary adenoid cystic carcinoma, large-scale studies cannot be conducted due to its low incidence, and studies on the targeted therapy of it are very scarce. A few case reports indicate that targeted therapy can be effective however, suggesting that it may be a good option. The current report is the first on the occurrence of human epidermal growth factor receptor 2 amplification in pulmonary adenoid cystic carcinoma. The patient was treated with pyrotinib for 6 months and achieved stable disease.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dashmeet Anand, Hariharakumar Narasimhakumar, Et al.

Service Function Chaining (SFC) is a capability that links multiple network functions to deploy end-to-end network services. By virtualizing these network functions also known as Virtual Network Functions (VNFs), the dependency on traditional hardware can be removed, hence making it easier to deploy dynamic service chains over the cloud environment. Before implementing service chains over a large scale, it is necessary to understand the performance overhead created by each VNF owing to their varied characteristics. This research paper attempts to gain insights on the server and networking overhead encountered when a service chain is deployed on a cloud orchestration tool such as OpenStack. Specifically, this research will measure the CPU utilization, RAM usage and System Load of the server hosting OpenStack. Each VNF will be monitored for its varying performance parameters when subjected to different kinds of traffic. Our focus lies on acquiring performance parameters of the entire system for different service chains and compare throughput, latency, and VNF statistics of the virtual network. Insights obtained from this research can be used in the industry to achieve optimum performance of hardware and network resources while deploying service chains.


2021 ◽  
pp. 44-52
Author(s):  
V. F. Baranov

The article describes the largest operating processing plants for lowgrade copper sulphide ores of our time: 10 plants using the semi-autogenous grinding (SAG) technology and 10 plants using high-pressure grinding rolls (HPGR), with the output of 18 to 100 Mtpa. The unfavorable natural and economic factors are balanced by improved ore preparation and concentration technologies and high-capacity equipment units, combined with cost-saving layout solutions. The ore preparation sector is currently divided between the competing technologies of semi-autogenous grinding and HPGR. The article contains an overview of their advantages and disadvantages. The world’s largest monosection with the capacity of 55.5 Mtpa, that uses the SAG technology, is described. The role of the Drop Weght Test JKSimMet (A×b) parameter in the selection of the ore preparation method and the trend for using HPGR in the processing of strong ores are shown. Examples are provided for the consequences of an inadequate assessment of the feed strength in SAG-based plant designs. Examples of ore preparation process intensification through the use of HPGR in semi-autogenous grinding circuits are also given. The volume of impeller flotation cells installed has reached 600 m3. An overview of the two largest processing plants of our time with the output of 88 and 100 Mtpa of ore is presented. The innovative technical solutions of a newest low-capacity copper plant are highlighted. Based on the results of the overview, a future processing plant is predicted to use ∅12.8–13 m SAG mills, HPGRs with the roll diameter of 3 m, vertical VTM-7000 mills in ore grinding cycles, large fine screens, large-scale impeller flotation cells, and staged SFR and DFR flotation reactors.


Author(s):  
Hao Liang ◽  
Weiding Long ◽  
Yingqian Song ◽  
Fang Liu

The energy-Internet is a new energy supply method based on urban compact and densely populated community in a low-carbon city. The principle is to connect small energy generation stations and combined heat and power system (CHP) based on distributed energy technology and renewable energy into a network in the urban district. In this way, the cooling, heating and electricity could all back each other up. Each building of the community could collect the energy and then put that energy into the energy-internet to supply the heating and power to buildings. The power in the energy-internet could also be used for charging electric vehicles. So the energy use in the urban community would be basically self-sufficient. The energy generation stations in the energy-internet could be solar power, wind power, biomass cogeneration (including refuse power generation), household fuel cell, low-grade heat in rivers, lakes, urban sewage and soil. In this way, large-scale renewable energy and unused energy could be fully used and applied in a compact and dense community. If the energy-internet is suitable designed, the equipment capacity, energy consumption and CO2 emission of the community could be greatly reduced, energy efficiency could be optimized and improved and the heat island effect could also be alleviated. This article explores three major problems of the construction of energy internet and their solutions: namely, the location and layout of the energy station, the environmental economic dispatch model of the energy internet with power dispatching as an example, the optimal path design of hot water pipe network combined with graph theory and genetic algorithms.


Author(s):  
Collin Gaskill ◽  
Jie Wu ◽  
Decao Yin

A newly developed Tri-Helically Grooved drilling riser buoyancy module design was tested in the towing tank of SINTEF Ocean in June 2017. This new design aims to reduce riser drag loading and suppress vortex-induced vibrations (VIV). Objectives of the test program were two-fold: to assess the hydrodynamic performance of the design allowing for validation of previous computational fluid dynamics (CFD) studies through empirical measurements, and, to develop a hydrodynamic force coefficient database to be used in numerical simulations to evaluate drilling riser deformation due to drag loading and fatigue lives when subjected to VIV. This paper provides the parameters of the testing program and a discussion of the results from the various testing configurations assessed. Tests were performed using large scale, rigid cylinder test models at Reynolds numbers in the super-critical flow regime, defined as starting at a Reynolds number of Re = 3.5 × 105 – 5.0 × 105 (depending on various literatures) and continuing until Re = 3 × 106. Towing tests, with fixed and freely oscillating test models, were completed with both a bare test cylinder and a test cylinder with the Tri-Helical Groove design. Additional forced motion tests were performed on the helically grooved model to calculate lift and added mass coefficients at various amplitudes and frequencies of oscillation for the generation of a hydrodynamic force coefficient database for VIV prediction software. Significant differences were observed in the hydrodynamic performance of the bare and helically grooved test models considering both in-line (IL) drag and cross-flow (CF) cylinder excitation and oscillation amplitude. For the helically grooved model, measured static drag shows a strong independence from Reynolds number and elimination of the drag crisis region with an average drag coefficient of 0.63. Effective elimination of VIV and subsequent drag amplification was observed at relatively higher reduced velocities, where the bare test model shows a significant dynamic response. A small level of expected response for the helically grooved model was seen across the lower range of reduced velocities. However, disruption of vortex correlation still occurs in this range and non-sinusoidal and highly amplitude-modulated responses were observed.


2020 ◽  
Vol 37 (4) ◽  
pp. 1339-1347 ◽  
Author(s):  
Jinghe Chen ◽  
Shuiping Zhong ◽  
Ding Tang ◽  
Chen Kuang

2010 ◽  
Vol 1 (4) ◽  
pp. 246-250 ◽  
Author(s):  
F. Suárez ◽  
A. E. Childress ◽  
S. W. Tyler

A salt-gradient solar pond is a low-cost, large-scale solar collector with integrated storage that can be used as a source of energy in low-grade-heat thermal desalination systems. This work presents the thermal evolution of an experimental solar pond for both the maturation and heat extraction time periods. The temperature profile was measured every 1.1 cm using a vertical high-resolution distributed temperature sensing (DTS) system, with a temperature resolution of 0.04ºC. Temperatures of 34 and 45ºC were achieved in the bottom of the pond when the lights were on for 12 and 24 hours per day, respectively. Heat was extracted at a rate of 139 W from the solar pond, which corresponded to an efficiency of 29%. Stratification and mixing were clearly observed inside the solar pond using the vertical high-resolution DTS system.


Sign in / Sign up

Export Citation Format

Share Document