Metallogeny of the Marco zone, Corvet Est, disseminated gold deposit, James Bay, Quebec, Canada

2012 ◽  
Vol 49 (10) ◽  
pp. 1154-1176
Author(s):  
Martin Aucoin ◽  
Georges Beaudoin ◽  
Robert A. Creaser ◽  
Paul Archer

The Corvet Est gold deposit is hosted by Archean rocks of the Superior Province in the James Bay region, northern Quebec, Canada. The Marco zone is hosted by amphibolite-grade, strongly foliated volcanic rocks and consists of disseminated gold, with an apparent thickness ranging from 1.8 to 39.5 m and gold grades up to 23 g·t–1 over 1 m, that is continuous along strike for ∼1.3 km. The lithotectonic sequence comprises footwall basaltic andesite amphibolite overlain by a lenticular unit of metadacite and then by hanging-wall basaltic andesite amphibolite, all intruded by quartz–feldspar porphyry dikes. Dacite, basaltic andesite amphibolite, and quartz–feldspar porphyry show a calc-alkaline to transitional affinity and plot in the plate margin arc basalt field, with typical volcanic arc trace element patterns. Mineralization consists of pyrite, arsenopyrite, pyrrhotite, chalcopyrite, and gold, disseminated in deformed dacite, in andesite amphibolite, and in quartz–feldspar porphyry dikes. Dacite and andesite display weak alteration characterized by silicification. Native gold forms inclusions in metamorphic quartz, garnet, feldspar, arsenopyrite, and pyrite or free grains interstitial to quartz, feldspar, pyrite, chalcopyrite, and arsenopyrite. Free gold in late quartz veins cut the sericitized metamorphic fabric. Inclusion and interstitial native gold within minerals annealed during metamorphism shows that gold mineralization is pre- to syn-metamorphic, with some gold remobilized in later veins. Rhenium–osmium dating of arsenopyrite yields an isochron age of 2663 ± 13 Ma for mineralization and a weighted average model age of 2632 ± 7 Ma for arsenopyrite formed during peak metamorphism. The ∼2663 Ma arsenopyrite has a low initial 187Os/188Os of 0.19 ± 0.10, suggesting a juvenile crust or a mantle Os source. The sulfur isotope composition of Marco zone pyrite and arsenopyrite shows that sulfur could have been leached from its volcanic host rocks or from reduction of Archean seawater. The Corvet Est deposit is interpreted to be an orogenic gold deposit (2663 Ma) deformed and recrystallized during amphibolite-grade metamorphism (2632 Ma).


2016 ◽  
Vol 53 (1) ◽  
pp. 10-33 ◽  
Author(s):  
Lijuan Liu ◽  
Jeremy P. Richards ◽  
S. Andrew DuFrane ◽  
Mark Rebagliati

Newton is an intermediate-sulfidation epithermal gold deposit related to Late Cretaceous continental-arc magmatism in south-central British Columbia. Disseminated gold mineralization occurs in quartz–sericite-altered Late Cretaceous felsic volcanic rocks, and feldspar–quartz–hornblende porphyry and quartz–feldspar porphyry intrusions. The mineralization can be divided into three stages: (1) disseminated pyrite with microscopic gold inclusions, and sparse quartz–pyrite ± molybdenite veins; (2) disseminated marcasite with microscopic gold inclusions and minor base-metal sulfides; and (3) polymetallic veins of pyrite–chalcopyrite–sphalerite–arsenopyrite. Re–Os dating of molybdenite from a stage 1 vein yielded an age of 72.1 ± 0.3 Ma (published by McClenaghan in 2013). The age of the host rocks has been constrained by U–Pb dating of zircon: Late Cretaceous felsic volcanic rocks, 72.1 ± 0.6 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013); feldspar–quartz–hornblende porphyry, 72.1 ± 0.5 Ma; quartz–feldspar porphyry, 70.9 ± 0.5 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013). The mineralized rocks are intruded by a barren diorite, with an age of 69.3 ± 0.4 Ma. Fluid inclusions in quartz–pyrite ± molybdenite ± gold veins yielded an average homogenization temperature of 313 ± 51 °C (number of samples, n = 82) and salinity of 4.8 ± 0.9 wt.% NaCl equiv. (n = 46), suggesting that a relatively hot and saline fluid likely of magmatic origin was responsible for the first stage of mineralization. Some evidence for boiling was also observed in the veins. However, the bulk of the gold mineralization occurs as disseminations in the wall rocks, suggesting that wall-rock reactions were the main control on ore deposition.



Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 133 ◽  
Author(s):  
Si-Chen Sun ◽  
Liang Zhang ◽  
Rong-Hua Li ◽  
Ting Wen ◽  
Hao Xu ◽  
...  

The Zhengchong gold deposit, with a proven gold reserve of 19 t, is located in the central part of Jiangnan Orogenic Belt (JOB), South China. The orebodies are dominated by NNE- and NW- trending auriferous pyrite-arsenopyrite-quartz veins and disseminated pyrite-arsenopyrite-sericite-quartz alteration zone, structurally hosted in the Neoproterozoic epimetamorphic terranes. Three stages of hydrothermal alteration and mineralization have been defined at the Zhengchong deposit: (i) Quartz–auriferous arsenopyrite and pyrite; (ii) Quartz–polymetallic sulfides–native gold–minor chlorite; (iii) Barren quartz–calcite vein. Both invisible and native gold occurred at the deposit. Disseminated arsenopyrite and pyrite with invisible gold in them formed at an early stage in the alteration zones have generally undergone syn-mineralization plastic-brittle deformation. This resulted in the generation of hydrothermal quartz, chlorite and sulfides in pressure shadows around the arsenopyrite and the formation of fractures of the arsenopyrite. Meanwhile, the infiltration of the ore-forming fluid carrying Sb, Cu, Zn, As and Au resulted in the precipitation of polymetallic sulfides and free gold. The X-ray elements mapping of arsenopyrite and spot composition analysis of arsenopyrite and chlorite were carried out to constrain the ore-forming physicochemical conditions. The results show that the early arsenopyrite and invisible gold formed at 322–397 °C with lgf(S2) ranging from −10.5 to −6.7. The crack-seal structure of the ores indicates cyclic pressure fluctuations controlled by fault-valve behavior. The dramatic drop of pressure resulted in the phase separation of ore-forming fluids. During the phase separation, the escape of H2S gas caused the decomposition of the gold-hydrosulfide complex, which further resulted in the deposition of the native gold. With the weakening of the gold mineralization, the chlorite formed at 258–274 °C with lgf(O2) of −50.9 to −40.1, as constrained by the results from mineral thermometer.



2021 ◽  
Author(s):  
Wei Gao ◽  
Ruizhong Hu ◽  
Albert H. Hofstra ◽  
Qiuli Li ◽  
Jingjing Zhu ◽  
...  

Abstract The Youjiang basin on the southwestern margin of the Yangtze block in southwestern China is the world’s second largest Carlin-type gold province after Nevada, USA. The lack of precise age determinations on gold deposits in this province has hindered understanding of their genesis and relation to the geodynamic setting. Although most Carlin-type gold deposits in the basin are hosted in calcareous sedimentary rocks, ~70% of the ore in the Badu Carlin-type gold deposit is hosted by altered and sulfidized dolerite. Although in most respects Badu is similar to other Carlin-type gold deposits in the province, alteration of the unusual dolerite host produced hydrothermal rutile and monazite that can be dated. Field observations show that gold mineralization is spatially associated with, but temporally later than, dolerite. In situ secondary ion mass spectrometry (SIMS) U-Pb dating on magmatic zircon from the least altered dolerite yielded a robust emplacement age of 212.2 ± 1.9 Ma (2σ, mean square of weighted deviates [MSWD] = 0.55), providing a maximum age constraint on gold mineralization. The U-Th/He ages of detrital zircons from hydrothermally mineralized sedimentary host rocks at Badu and four other Carlin-type gold deposits yielded consistent weighted mean ages of 146 to 130 Ma that record cooling from a temperature over 180° to 200°C and place a lower limit on the age of gold mineralization in the basin. Hydrothermal rutile and monazite that are coeval with gold mineralization have been identified in the mineralized dolerite. Rutile is closely associated with hydrothermal ankerite, sericite, and gold-bearing pyrite. It has high concentrations of W, Fe, V, Cr, and Nb, as well as growth zones that are variably enriched in W, Fe, Nb, and U. Monazite contains primary two-phase fluid inclusions and is intergrown with gold-bearing pyrite and hydrothermal minerals. In situ SIMS U-Pb dating of rutile yielded a Tera-Wasserburg lower intercept age of 141.7 ± 5.8 Ma (2σ, MSWD = 1.04) that is within error of the in situ SIMS Th-Pb age of 143.5 ± 1.4 Ma (2σ, MSWD = 1.5) on monazite. These ages are ~70 m.y. younger than magmatic zircons in the host dolerite and are similar to the aforementioned U-Th/He cooling ages on detrital zircons from hydrothermally mineralized sedimentary host rocks. We, therefore, conclude that the Badu Carlin-type gold deposit formed at ca. 144 Ma. The agreement of the rutile and monazite ages with the U-Th-He cooling ages of Badu and four other Carlin-type gold deposits in the Youjiang basin suggests that ca. 144 Ma is representative of a regional Early Cretaceous Carlin-type hydrothermal event formed during back-arc extension.



2009 ◽  
Vol 46 (7) ◽  
pp. 509-527 ◽  
Author(s):  
Y. M. DeWolfe ◽  
H. L. Gibson ◽  
S. J. Piercey

A detailed study of the geochemical and isotopic characteristics of the volcanic rocks of the Hidden and Louis formations, which make up the hanging wall to the volcanogenic massive sulphide deposits at Flin Flon, Manitoba, was carried out on a stratigraphically controlled set of samples. The stratigraphy consists of the lowermost, dominantly basaltic, Hidden formation, and the overlying, dominantly basaltic, Louis formation. Of importance petrogenetically, is the 1920 unit a basaltic andesite with Nb/Thmn = 0.54–0.62, εNd(1.9Ga) = +3.6–+5.9, εHf(1.9Ga) = +8.5–+9.6, and 204Pb/206Pb = 23.9. The basaltic flows that dominate the Hidden formation have Nb/Thmn = 0.16–0.29, εNd(1.9Ga) = +1.7–+4.4, εHf(1.9Ga) = +7.0–+11.8 and 204Pb/206Pb = 16.9–18.6). The Carlisle Lake basaltic–andesite (top of Hidden formation) is characterized by Nb/Thmn = 0.16–0.14, and 204Pb/206Pb = 21.4. The rhyodacitic Tower member (bottom of Louis formation) has Nb/Thmn = 0.23, εNd1.9Ga = +4.6, εHf1.9Ga = +9.3, and 204Pb/206Pb = 22.2. The basaltic flows that dominate the Louis formation have Nb/Thmn = 0.18–0.25, εNd(1.9Ga) = +3.6–+4.2, εHf(1.9Ga) = +8.4–+11.3 and 204Pb/206Pb = 17.9. The Hidden and Louis formations show dominantly transitional arc tholeiite signatures, with the 1920 unit having arc tholeiite characteristics. It is interpreted to have formed through extensive fractional crystallization of differentiated magmas at shallow levels in oceanic crust. Given the geological, geochemical, and isotopic characteristics of the Hidden and Louis formations, they are interpreted to represent subducted slab metasomatism with minor contamination from subducted sediments.



1991 ◽  
Vol 28 (11) ◽  
pp. 1699-1730 ◽  
Author(s):  
T. J. Barrett ◽  
W. H. MacLean ◽  
S. Cattalani ◽  
L. Hoy ◽  
G. Riverin

The Ansil massive sulfide deposit occurs at the contact of the underlying Northwest Rhyolite and the overlying Rusty Ridge Andesite, in the lower part of the Central Mine sequence of the Blake River Group. The orebody, which is roughly ellipsoidal in outline and up to 200 m × 150 m across, contained reserves of 1.58 Mt of massive sulfide grading 7.2% Cu, 0.9% Zn, 1.6 g/t Au, and 26.5 g/t Ag. Production began in 1989. Least-altered host rocks are low-K basaltic andesites and low-K rhyolites. These rocks have Zr/Y ratios of ~5 and LaN/YbN ratios of ~2.3, typical of tholeiitic volcanic rocks, although their major-element chemistry is transitional between tholeiitic and calc-alkaline volcanic rocks.The Ansil deposit, which dips ~50° east, is a single orebody comprising two main massive sulfide lenses (up to ~35 m thick) connected laterally via a thinner blanket of massive sulfides, with thin discontinuous but conformable massive magnetite units at the base and top of the orebody. Sulfide ore consists of massive to banded pyrrhotite–chalcopyrite. In the downplunge lens, up to 10 m of massive magnetite are capped by up to 10 m of massive sulfide. Finely banded cherty tuff, with sphalerite–pyrite–chalcopyrite, forms a discontinuous fringe to the deposit.The two main lenses of massive sulfide have the highest contents of Cu, Ag, and Au and are thought to have formed in areas of major hydrothermal input. Altered feeder zones contain either chlorite + chalcopyrite + pyrrhotite ± magnetite, or chlorite + magnetite ± sulfides. Footwall mineralization forms semiconformable zones ~5–10 m thick that directly underlie the orebody and high-angle pipelike zones that extend at least 50 m into the footwall. Ti–Zr–Al plots indicate that almost all altered footwall rocks were derived from a homogeneous rhyolite precursor. Hanging-wall andesites were also altered. Despite some severe alteration, all initial volcanic rock compositions can be readily identified, and thus mass changes can be calculated. Silica has been both significantly added or removed from the footwall, whereas K has been added except in feeder pipes. Oxygen-isotope compositions up to at least 50 m into the hanging wall and footwall are typically depleted in δ18O by 2–6‰. These rocks have gained Fe + Mg and lost Si. Altered samples in general range from light-rare-earth-element (REE) depleted to light-REE enriched, although some samples exhibit little REE modification despite strong alkali depletion. Mineralized volcanic rocks immediately below the orebody are enriched in Eu (as are some Cu-rich sulfides in the orebody).Contact and petrographic relations generally suggest that the main zone of massive magnetite formed by replacement of cp–po-rich sulfides, although local relations are ambiguous. Magnetite formation may reflect waning hydrothermal activity, during which fluids mixed with seawater and became cooler and more oxidized. Cu-rich feeder pipes that cut magnetite-rich footwall indicate a renewal of Cu-sulfide mineralization after magnetite deposition. Chloritic zones with disseminated sulfides occur up to a few hundred metres above the orebody, attesting to continuing hydrothermal activity.



1996 ◽  
Vol 33 (2) ◽  
pp. 335-350 ◽  
Author(s):  
Damien Gaboury ◽  
Benoît Dubé ◽  
Marc R. Laflèche ◽  
Kathleen Lauzière

The Hammer Down gold deposit is one of the most significant mesothermal vein-type gold deposits in the Canadian Appalachians. It is located within a complex sequence of Ordovician, mafic-dominated tholeiitic and calc-alkalic and arc-related volcanic rocks, which was intruded by Silurian felsic porphyry dykes. The host rocks have undergone complex polyphase deformation. At least three deformational events influenced vein emplacement and overall geometry of the deposit. A Taconian deformation (D1–2) was responsible for the development of a 250 m wide zone of high-strain deformation (HSZ1) at the interface between two blocks of Ordovician rocks: the Catcher's Pond Group and the Lush's Bight Group. Rocks included within the HSZ1, represent "exotic" slabs of volcanic rocks that were tectonically juxtaposed, intensively foliated (S1), and folded (F2). Gold occurs in high-grade, sulfide-rich, fault-fill quartz veins that occur within the HSZ1. At the outcrop scale, these veins are hosted by discrete centimetre- to metre-wide ductile–brittle D3 high-strain zones (HSZ3) of Silurian or younger age. The development of the gold-hosting structures (HSZ3) is genetically related to layer anisotropy induced by intrafolial F2 folds, and most importantly by the presence of felsic porphyry dykes, which were competent compared to the intensively foliated and incompetent mafic volcanic rock sequence. A postmineralization D4–5 deformation, which included two generations of folds (F4 and F5) and late brittle faulting, is responsible for the actual geometry of the deposit.



2020 ◽  
Vol 115 (5) ◽  
pp. 1137-1150
Author(s):  
Bill T. Fischer ◽  
Jean S. Cline

Abstract The 144 zone is a pseudobreccia-hosted, disseminated gold deposit that formed in the middle to late Cambrian Bonanza King dolostone along an unconformity with the underlying early to middle Cambrian Carrara limestone at Bare Mountain, southern Nevada. Underground mapping revealed spatial relationships between breccia types, host rocks, and alteration assemblages that are related to gold mineralization. Samples were collected along transects from low- to high-grade Au and were analyzed using petrography, applied reflectance spectroscopy, scanning electron microscopy, and electron probe microanalysis to characterize mineral assemblages and evaluate gold deportment. Two breccia types are identified. Breccia type 1 clasts consist of dolomite, dolomite with phengite, and quartz cemented in a quartz-rich matrix. Breccia type 2 has similar clasts of dolomite, dolomite with phengite, and quartz, but the matrix is phengite dominant. Neither breccia type has a preferred association with gold, which occurs with goethite that replaced pyrite in both breccias. Clast and matrix compositions and textures show that the two breccia types formed at the same time by selective dissolution and replacement of the lowermost Bonanza King dolomite. Fluid-rock reaction transformed massive dolomite into pseudobreccia. Quartz replacement of dolomite plus the precipitation of pyrite, Au, and phengite yielded the 144 zone pseudobreccia matrix. The geology that characterizes gold mineralization in the 144 zone can be applied to exploration throughout Bare Mountain. Other localities where the same stratigraphic contact is cut by silicic dikes of similar age provide drill targets in the mining district.



LITOSFERA ◽  
2019 ◽  
pp. 111-138
Author(s):  
I. Yu. Melekestseva ◽  
V. V. Zaykov ◽  
G. A. Tret’yakov ◽  
K. A. Filippova ◽  
V. A. Kotlyarov

Subject. The article presents the results of study of Mechnikovskoe gold deposit associated with listvenites and beresites of the Miass region of the Southern Urals.Materials and methods. Materials were sampled during the field work of 2010– 2012. The chemical composition of rocks is analyzed by methods of classical chemistry (rock-forming oxides) and ICP MS (trace elements). The mineral composition is determined on an electron microscope with EDS.Results. The deposit is composed of tectonic sheets of serpentinites, carbonatized serpentinites and listvenites (sheet I), metadiabases and plagioclase metabasalts of the Irendyk Formation and beresites and volcanosedimentary rocks and metabasalts of the Karamalytash Formation (sheet II). In the central part of the deposit, the volcanic rocks are intruded by a dike of finegrained island-arc granites. Chromites of serpentinites are characterized (on average) by high Cr# (89) and low Mg# (29) values and low contents of Al2O3 (6.94 wt %) and MgO (5.5 wt %). Gold-bearing rocks include listvenites, beresites and carbonaceous shales. The major ore mineral is pyrite; accessory minerals are Au and Ag minerals, chalcopyrite, fahlores, galena, sphalerite, pyrrhotite, cubanite, vaesite, melonite, secondary copper sulfides, barite, rutile, monazite and xenotime. Gold of the deposit contains low Ag contents (3.52 wt %) and minor amount of Cu and Hg (<1 wt % in most analyses).Conclusions. The listvenites and beresites of the deposit were formed after ultramafic and mafic rocks, respectively. The discovery of gold in various rocks indicates that gold mineralization was deposited after the formation of the geological structure of the deposit. The source of gold was most likely related to a magmatic fluid.



Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1066
Author(s):  
Damien Gaboury ◽  
Dominique Genna ◽  
Jacques Trottier ◽  
Maxime Bouchard ◽  
Jérôme Augustin ◽  
...  

The Perron deposit, an Archean orogenic gold deposit located in the Abitibi belt, hosts a quartz vein-type gold-bearing zone, known as the high-grade zone (HGZ). The HGZ is vertically continuous along >1.2 km, and is exceptionally rich in visible gold throughout its vertical extent, with grades ranging from 30 to 500 ppm. Various hypotheses were tested to account for that, such as: (1) efficient precipitating mechanisms; (2) gold remobilization; (3) particular fluids; (4) specific gold sources for saturating the fluids; and (5) a different mineralizing temperature. Host rocks recorded peak metamorphism at ~600 °C based on an amphibole geothermometer. Visible gold is associated with sphalerite (<5%) which precipitated at 370 °C, based on the sphalerite GGIMFis geothermometer, during late exhumation of verticalized host rocks. Pyrite chemistry analyzed by LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) is comparable to classical orogenic gold deposits of the Abitibi belt, without indication of a possible magmatic fluid and gold contribution. Comparison of pyrite trace element signatures for identifying a potential gold source was inconclusive to demonstrate that primary base-metal rich volcanogenic gold mineralization, dispersed in the host rhyolitic dome, could be the source for the later formation of the HGZ. Rather, nodular pyrites in graphitic shales, sharing similar trace element signatures with pyrite of the HGZ, are considered a potential source. The most striking outcome is the lack of water in the mineralizing fluids, implying that gold was not transported under aqueous complexes, even if fugacity of sulfur (−6) and oxygen (−28), and pH (~7) are providing the best conditions at a temperature of 350 °C for solubilizing gold in water. Fluid inclusions, analyzed by solid-probe mass spectrometry, are rather comparable to fossil gas composed mostly of hydrocarbons (methane and ethane and possibly butane and propane and other unidentified organic compounds), rich in CO2, with N2 and trace of Ar, H2S, and He. It is interpreted that gold and zinc were transported as hydrocarbon-metal complexes or as colloidal gold nanoparticles. The exceptional high content of gold and zinc in the HGZ is thus explained by the higher transporting capacity of these unique mineralizing fluids.



Sign in / Sign up

Export Citation Format

Share Document