scholarly journals Nuciferine Inhibits Proinflammatory Cytokines via the PPARs in LPS-Induced RAW264.7 Cells

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2723 ◽  
Author(s):  
Chao Zhang ◽  
Jianjun Deng ◽  
Dan Liu ◽  
Xingxia Tuo ◽  
Yan Yu ◽  
...  

Inflammation is important and has been found to be an underlying cause in many acute and chronic human diseases. Nuciferine, a natural alkaloid containing an aromatic ring, is found in the nelumbo nucifera leaves. It has been shown to have potential anti-inflammatory activities, but the molecular mechanism has remained unclear. In this study, we found that nuciferine (10 μM) significantly inhibited the lipopolysaccharide (LPS)-induced inflammatory cytokine IL-6 and TNF-α production in RAW 264.7 cells. In addition, the luciferase reporter assay results of different subtypes of the peroxisome proliferator-activated receptor (PPAR) showed that nuciferine dose-dependently activated all the PPAR activities. Specific inhibitors of PPARα and PPARγ significantly abolished the production of inflammatory cytokines as well as IκBα degradation. However, PPARδ inhibitor did not show this effect. Our results suggested a potential molecular mechanism of the anti-inflammatory effects of nuciferine in LPS-induced inflammation, at least in part, by activating PPARα and PPARγ in RAW 264.7 cells.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241224
Author(s):  
Soohan Jung ◽  
Jaehee Park ◽  
Kwang Suk Ko

Prohibitin 1 (Phb1) is a pleiotropic protein with multiple functions in mammalian cells including cell cycle regulation and mitochondrial protein stabilization. It has been proposed as a potential therapeutic target for a variety of diseases including inflammatory diseases. In this study, we investigated the potential immune-modulatory functions of Phb1 and anti-inflammatory properties of S-adenosylmethionine (SAMe) using macrophages, which play a major role in the innate immune system. The results showed that expressions of Phb1 mRNA and protein were reduced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (p<0.05). Phb1 knockdown further ameliorated the mRNA expression of pro- and anti-inflammatory cytokines such as TNF-α, IL-1α, IL-1β, IL-6, and IL10 in LPS-stimulated RAW 264.7 cells. SAMe significantly attenuated LPS-induced inflammatory responses such as IL-1β, IL-10, Nos2, and NO production in the presence of siPhb1. Luciferase reporter assay was conducted to determine the mechanisms underlying the effects of Phb1 and SAMe on the immune system. The luciferase activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was significantly increased in LPS-treated RAW 264.7 cells. In addition, the luciferase reporter assay showed increased NF-κB activation in Phb1 knockdown RAW 264.7 cells (p<0.1) and SAMe treatment attenuated the NF-κB luciferase activity in Phb1 knockdown RAW 264.7 cells. Based on the results, we concluded that Phb1 possibly modulates the inflammatory response whereas SAMe has an anti-inflammatory effect on Phb1 knockdown macrophage cells. Furthermore, Phb1 expression level has potential properties of affecting on innate immune system by modulating the NF-κB signaling pathway.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Author(s):  
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 222 ◽  
Author(s):  
Wenhui Jin ◽  
Longhe Yang ◽  
Zhiwei Yi ◽  
Hua Fang ◽  
Weizhu Chen ◽  
...  

Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA–PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.


Author(s):  
Qiao-ling Fei ◽  
Xiao-yu Zhang ◽  
Rui-juan Qi ◽  
Yun-feng Huang ◽  
Yi-xin Han ◽  
...  

Abstract Background Canscora lucidissima (Levl. & Vaniot) Hand.-Mazz. (C. lucidissima), mainly distributed in southern China, has been shown to be effective in the treatment of inflammatory diseases. However, the underlying mechanism of its anti-inflammatory effect is not fully understood. Methods In this study, we investigated the anti-inflammatory mechanism of ethanol extract of C. lucidissima (Cl-EE) in lipopolysaccharide (LPS)-induced inflammatory models. ELISA, real-time PCR, Western blot and luciferase reporter assay were used for the experiments in vitro, and ICR mouse endotoxemia model was used for in vivo test. Results Our data showed that Cl-EE reduced the production of NO by down-regulating the mRNA and protein expression of inducible nitric oxide synthase (iNOS) in LPS-activated RAW 264.7 cells. Meanwhile, it potently decreased other proinflammatory mediators, such as TNF-α, IL-6, MCP-1 and IL-1β at the transcriptional and translational levels. Further study indicated that Cl-EE did not affect NF-κB signaling pathway but significantly suppressed the phosphorylation of ERK1/2, rather than JNK or p38. In a LPS-induced endotoxemia mouse model, a single intraperitoneal injection of Cl-EE (75–300 mg/kg) could lower circulatory TNF-α, IL-6 and MCP-1 levels. Conclusions Collectively, our results indicated that Cl-EE suppressed the phosphorylation level of ERK1/2 thus reducing the transcription and translation of inflammatory genes, thereby exerted anti-inflammatory activity. This study reveals the anti-inflammatory mechanism of C. lucidissima and may provide an effective treatment option for a variety of inflammatory diseases.


2018 ◽  
Vol 19 (7) ◽  
pp. 2027 ◽  
Author(s):  
Jingyu He ◽  
Xianyuan Lu ◽  
Ting Wei ◽  
Yaqian Dong ◽  
Zheng Cai ◽  
...  

Hedyotis diffusa is a folk herb that is used for treating inflammation-related diseases in Asia. Previous studies have found that iridoids in H. diffusa play an important role in its anti-inflammatory activity. This study aimed to investigate the anti-inflammatory effect and potential mechanism of five iridoids (asperuloside (ASP), asperulosidic acid (ASPA), desacetyl asperulosidic acid (DAA), scandoside methyl ester (SME), and E-6-O-p-coumaroyl scandoside methyl ester (CSME)) that are presented in H. diffusa using lipopolysaccharide (LPS)—induced RAW 264.7 cells. ASP and ASPA significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in parallel with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 mRNA expression in LPS-induced RAW 264.7 cells. ASP treatment suppressed the phosphorylation of the inhibitors of nuclear factor-kappaB alpha (IκB-α), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The inhibitory effect of ASPA was similar to that of ASP, except for p38 phosphorylation. In summary, the anti-inflammatory effects of ASP and ASPA are related to the inhibition of inflammatory cytokines and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which provides scientific evidence for the potential application of H. diffusa.


2018 ◽  
Vol 48 (1) ◽  
pp. 339-347 ◽  
Author(s):  
Weiwei Wang ◽  
Lei Yang ◽  
Dan Zhang ◽  
Chao Gao ◽  
Jie Wu ◽  
...  

Background/Aims: Postmenopausal osteoporosis is a common disease associated with estrogen deficiency leading to bone loss and bone tissue changes. The resultant bone fragility and increased risk of fracture has serious adverse effects on health and quality of life of the elderly, making it an important health issue. MicroRNA-218 (miR-218) is closely related to the development of osteoporosis. In this study, we investigated the regulatory mechanisms of miR-218 in osteoclastogenesis. Methods: We investigated miR-218 levels on differentiation of RAW 264.7 cells into osteoclasts compared with normal cells. Next, RAW 264.7 cells were transfected with miR-218 mimics or inhibitors to study the role of miR-218 in osteoclastogenic differentiation. Tartrate-resistant acid phosphatase (TRAP) staining was performed to determine osteoclastogenic differentiation. Bioinformatics analysis and luciferase reporter assay were used to identify and validate miR-218 target genes. Results: miR-218 was downregulated following RAW 264.7 cell differentiation into osteoclasts. miR-218 overexpression attenuated osteoclast differentiation, whereas low miR-218 expression promoted it as demonstrated by increased expression of osteoclast-specific genes and TRAP staining. Bioinformatics analysis and the luciferase reporter assay showed that tumor necrosis factor receptor 1 (TNFR1), a cell membrane receptor of TNF (TNF is an activator of nuclear factor-κB [NF-κB]), is a direct target of miR-218. Conclusions: Our findings indicate that miR-218 regulates osteoclastogenic differentiation negatively by repressing NF-κB signaling by targeting TNFR1, suggesting that targeting miR-218 may be a therapeutic approach in postmenopausal osteoporosis.


2012 ◽  
Vol 40 (04) ◽  
pp. 813-831 ◽  
Author(s):  
You-Chang Oh ◽  
Won-Kyung Cho ◽  
Yun Hee Jeong ◽  
Ga Young Im ◽  
Min Cheol Yang ◽  
...  

Sipjeondaebotang (SJ) has been used as a traditional drug in east-Asian countries. In this study, to provide insight into the biological effects of SJ and SJ fermented by Lactobacillus, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in macrophages. The investigation was focused on whether SJ and fermented SJ could inhibit the production of pro-inflammatory mediators such as prostaglandin (PG) E2 and nitric oxide (NO) as well as the expressions of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in LPS-stimulated RAW 264.7 cells. We found that SJ modestly inhibited LPS-induced PGE2, NO and TNF-α production as well as the expressions of COX-2 and iNOS. Interestingly, fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, fermented SJ exhibited increased inhibition of p38 MAPK and c-Jun NH2-terminal kinase (JNK) MAPK phosphorylation as well as NF-κB p65 translocation by reduced IκBα degradation compared with either untreated controls or unfermented SJ. High performance liquid chromatography (HPLC) analysis showed fermentation by Lactobacillus increases liquiritigenin and cinnamyl alcohol contained in SJ, which are known for their anti-inflammatory activities. Finally, SJ fermented by Lactobacillus exerted potent anti-inflammatory activity by inhibiting MAPK and NF-κB signaling in RAW 264.7 cells.


2004 ◽  
Vol 286 (5) ◽  
pp. G722-G729 ◽  
Author(s):  
Chin K. Sung ◽  
Hongyun She ◽  
Shigang Xiong ◽  
Hidekazu Tsukamoto

Diminished activity of peroxisome proliferator-activated receptor γ (PPARγ) is implicated in activation of hepatic stellate cells (HSC), a critical event in the development of liver fibrosis. In the present study, we investigated PPARγ regulation by TNF-α in an HSC line designated as BSC. In BSC, TNF-α decreased both basal and ligand (GW1929)-induced PPARγ mRNA levels without changing its protein expression. Nuclear extracts from BSC treated with TNF-α showed decreased binding of PPARγ to PPAR-responsive element (PPRE) as determined by electrophoretic mobility shift assay. In BSC transiently transfected with a PPARγ1 expression vector and a PPRE-luciferase reporter gene, TNF-α decreased both basal and GW1929-induced transactivation of the PPRE promoter. TNF-α increased activation of ERK1/2 and JNK, previously implicated in phosphorylation of Ser82 of PPARγ1 and resultant negative regulation of PPARγ transactivity. In fact, TNF-α failed to inhibit transactivity of a Ser82Ala PPARγ1 mutant in BSC. TNF-α-mediated inhibition of PPARγ transactivity was not blocked with a Ser32Ala/Ser36Ala mutant of inhibitory NF-κBα (IκBα). These results suggest that TNF-α inhibits PPARγ transactivity in cultured HSC, at least in part, by diminished PPARγ-PPRE (DNA) binding and ERK1/2-mediated phosphorylation of Ser82 of PPARγ1, but not via the NF-κB pathway.


2020 ◽  
Vol 37 (2) ◽  
pp. 88-93
Author(s):  
Na Young Jo

Background: The purpose of this study was to investigate whether Sibseonsan (SSS) is an effective anti-inflammatory, anti-wrinkling, and whitening agent.Methods: To determine whether SSS had an anti-inflammatory effect, a murine macrophage cell line was used (RAW 264.7) and production of DPPH, NO, TNF-α, and PGE2 were measured. To ascertain potential anti-wrinkle effects of SSS in these cells, collagenase and elastase production were measured. To verify whether SSS had a whitening effect, tyrosinase activity and DOPA staining were performed using a melanoma cell line (B16/F10).Results: There was no significant reduction in survival of SSS-treated RAW 264.7 cells, up to 400 μg/mL. Free radical scavenging (23.96 ± 1.85%) was observed in RAW 264.7 cells treated with SSS at a concentration of 400 μg/mL. The SSS treatment group (400 μg/mL) significantly inhibited NO production compared with the LPS stimulated treatment group. The SSS treatment of macrophage cells appeared to reduce production of TNF-α in a concentration dependent manner. There was a significant reduction in the concentration of PGE<sub>2</sub> by about 25% in the SSS treatment (400 μg/mL) group (<i>p</i> = 0.05). Compared with the control, the production of collagenase and elastase in B16/F10 cells treated with SSS (400 μg/mL) was greater by 26.37% and 45.71%, respectively. The SSS treatment (400 μg/mL) group showed a significant reduction by about 17% in tyrosinase production in B16/F10 cells. The SSS treatment group showed little change in DOPA staining.<br>Conclusion: SSS extract may be useful for the treatment and prevention of inflammatory diseases and may have anti-wrinkle and whitening effects. These results may support the use of SSS in clinical practice.


2014 ◽  
Vol 9 (5) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Min-Jin Kim ◽  
Kyong-Wol Yang ◽  
Sang Suk Kim ◽  
Suk Man Park ◽  
Kyung Jin Park ◽  
...  

Though many essential oils from citrus peels are claimed to have several medicinal functions, the chemical composition and biological activities of the essential oils of Citrus flowers have not been well described. Therefore, this study intended to investigate the chemical composition and anti-inflammatory potential of essential oils from C. unshiu flower (CEO) to support its purported beneficial health effects. The chemical constituents of the CEO, analyzed by gas chromatography-mass spectrometry (GC-MS), included γ-terpinene (24.7%), 2-β-pinene (16.6%), 1-methyl-2-isopropylbenzene (11.5%), L-limonene (5.7%), β-ocimene (5.6%), and α-pinene (4.7%). The effects of the CEO on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages were also examined. The results indicate that the CEO is an effective inhibitor of LPS-induced NO and PGE2 production in RAW 264.7 cells. Additionally, CEO was shown to suppress the production of inflammatory cytokines including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6. Based on these results, CEO may be considered a potential anti-inflammatory candidate with human health benefits.


Sign in / Sign up

Export Citation Format

Share Document