scholarly journals Antibacterial and Biofilm Inhibitory Activity of Medicinal Plant Essential Oils Against Escherichia coli Isolated from UTI Patients

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1161 ◽  
Author(s):  
Rihab Lagha ◽  
Fethi Ben Abdallah ◽  
Badriah AL-Sarhan ◽  
Yassin Al-Sodany

Urinary tract infections (UTIs), caused by Escherichia coli 80% to 85% of the time, are one of the most important causes of morbidity and health care spending affecting persons of all ages. These infections lead to many difficult problems, especially increasing resistance to antibiotic drugs. Bacterial biofilms play an important role in UTIs, responsible for persistent infections leading to recurrences and relapses. In this study, we have investigated the antibacterial activity of five medicinal plant essential oils against UTIs caused by E. coli using disc diffusion and minimal inhibition concentration (MIC) methods. In addition, biofilm inhibitory action of oils was realized by crystal violet. Gas chromatography–mass spectrometry (GC–MS) analysis showed a variability between oils in terms of compound numbers as well as their percentages. Antibacterial activity was observed only in cases of Origanum majorana, Thymus zygis and Rosmarinus officinalis, while Juniperus communis and Zingiber officinale did not showed any effect towards E. coli isolates. T. zygis essential oil demonstrated the highest antibacterial activity against E. coli isolates, followed by O. majorana and R. officinalis. Further, oils showed high biofilm inhibitory action with a percentage of inhibition that ranged from 14.94% to 94.75%. R. officinalis oil had the highest antibiofilm activity followed by T. zygis and O. majorana. Accordingly, tested oils showed very effective antibacterial and antibiofilm activities against E. coli UTIs and can be considered as good alternative for antibiotics substitution.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hassna Jaber ◽  
Asmaa Oubihi ◽  
Imane Ouryemchi ◽  
Rachid Boulamtat ◽  
Ali Oubayoucef ◽  
...  

The aim of the present study was to determine the chemical composition of eight plant essential oils and evaluate their antibacterial activity against Escherichia coli strains isolated from different turkey organs. The essential oils were extracted by hydrodistillation and analyzed using gas chromatography-mass spectroscopy. All essential oil yielded high in a range between 2.2 and 3.12%. Gas chromatography-mass spectroscopy (GC-MS) revealed that the major constituents of Thymus vulgaris, Ocimum basilicum, Artemisia herba-alba, and Syzygium aromaticum oils were thymol (41.39%), linalool (37.16%), camphor (63.69%), and eugenol (80.83%), respectively. Results of the E. coli sensitivity evaluated by the standard antimicrobial sensitivity method varied depending on the organ of isolation. Similarly, the essential oils antimicrobial activity determined by the disc diffusion method varied all along within the organs of isolation. T. vulgaris essential oil showed the highest effective antibacterial activity against E. coli isolated from the throat with an inhibition zone diameter value of up to 23.33 mm. However, all the essential oils showed antibacterial activity and the MIC and MBC values were in the range of 1/3000 to 1/100 (v/v) and the ratios MBC/MIC were equal to 1. In conclusion, this study showed that the essential oils could be promising alternatives to overcome E. coli multiresistance in turkey.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
E. L. Mejía-Argueta ◽  
J. G. Santillán-Benítez ◽  
M. M. Canales-Martinez ◽  
A. Mendoza-Medellín

Abstract Background To test the antimicrobial potential of clove essential oil that has been less investigated on antimicrobial-resistant organisms (extended-spectrum β-lactamase-ESBL-producing Escherichia coli), we collected 135 ESBL-producing Escherichia coli strains given that E. coli is the major organism increasingly isolated as a cause of complicated urinary and gastrointestinal tract infections, which remains an important cause of therapy failure with antibiotics for the medical sector. Then, in this study, we evaluated the relationship between the antibacterial potential activity of Syzygium aromaticum essential oil (EOSA) and the expression of antibiotic-resistant genes (SHV-2, TEM-20) in plasmidic DNA on ESBL-producing E. coli using RT-PCR technique. Results EOSA was obtained by hydrodistillation. Using Kirby-Baüer method, we found that EOSA presented a smaller media (mean = 15.59 mm) in comparison with chloramphenicol (mean = 17.73 mm). Thus, there were significant differences (p < 0.0001). Furthermore, EOSA had an antibacterial activity, particularly on ECB132 (MIC: 10.0 mg/mL and MBC: 80.0 mg/mL), and a bacteriostatic effect by bactericidal kinetic. We found that the expression of antibiotic-resistant gene blaTEM-20 was 23.52% (4/17 strains) and no expression of blaSHV-2. EOSA presented such as majority compounds (eugenol, caryophyllene) using the GC–MS technique. Conclusions Plant essential oils and their active ingredients have potentially high bioactivity against a different target (membranes, cytoplasm, genetic material). In this research, EOSA might become an important adjuvant against urinary and gastrointestinal diseases caused by ESBL-producing E. coli.


2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Mohammadreza Pajohi Alamoti ◽  
Behnaz Bazargani-Gilani ◽  
Razzagh Mahmoudi ◽  
Anna Reale ◽  
Babak Pakbin ◽  
...  

Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.


2019 ◽  
Author(s):  
Shuzhen Xiao ◽  
Peng Cui ◽  
Wanliang Shi ◽  
Ying Zhang

AbstractEscherichia coli is the most dominant pathogen causing urinary tract infections (UTIs), but the current most frequently prescribed antibiotics do not always effectively cure the infection due to quiescent persister bacteria. While it has been reported that some essential oils have antimicrobial activity against growing E. coli, the activity of essential oils against the non-growing stationary phase E. coli which is enriched in persisters has not been investigated. We evaluated the activity of 140 essential oils against stationary phase uropathogenic E. coli UTI89 and identified 39, 8 and 3 essential oils at 0.5%, 0.25% and 0.125% concentrations to have high activity against stationary phase E. coli. Among the top eight essential oils, Oregano showed higher activity than the known persister drug tosufloxacin. The other top seven hits included Allspice, Bandit "Thieves", Cinnamon bark, Syzygium aromaticum, Health shield, Cinnamon leaf and Clove bud. In Oregano essential oil drug combination studies with common UTI antibiotics, Oregano plus quinolone drugs (tosufloxacin, levofloxacin, ciprofloxacin) completely eradicated all stationary phase E. coli cells, partially enhanced the activity of nitrofurantoin, but had no apparent enhancement for fosfomycin, meropenem and cefdinir. Our findings may facilitate development of more effective treatments for persistent UTIs.


2020 ◽  
Vol 13 (11) ◽  
pp. 369
Author(s):  
Fethi Ben Abdallah ◽  
Rihab Lagha ◽  
Ahmed Gaber

Methicillin-resistant Staphylococcus aureus is a major human pathogen that poses a high risk to patients due to the development of biofilm. Biofilms, are complex biological systems difficult to treat by conventional antibiotic therapy, which contributes to >80% of humans infections. In this report, we examined the antibacterial activity of Origanum majorana, Rosmarinus officinalis, and Thymus zygis medicinal plant essential oils against MRSA clinical isolates using disc diffusion and MIC methods. Moreover, biofilm inhibition and eradication activities of oils were evaluated by crystal violet. Gas chromatography–mass spectrometry analysis revealed variations between oils in terms of component numbers in addition to their percentages. Antibacterial activity testing showed a strong effect of these oils against MRSA isolates, and T. zygis had the highest activity succeeded by O. majorana and R. officinalis. Investigated oils demonstrated high biofilm inhibition and eradication actions, with the percentage of inhibition ranging from 10.20 to 95.91%, and the percentage of eradication ranging from 12.65 to 98.01%. O. majorana oil had the highest biofilm inhibition and eradication activities. Accordingly, oils revealed powerful antibacterial and antibiofilm activities against MRSA isolates and could be a good alternative for antibiotics substitution.


2008 ◽  
Vol 71 (3) ◽  
pp. 516-521 ◽  
Author(s):  
M. TURGIS ◽  
J. BORSA ◽  
M. MILLETTE ◽  
S. SALMIERI ◽  
M. LACROIX

Twenty-six different essential oils were tested for their efficiency to increase the relative radiosensitivity of Escherichia coli and Salmonella Typhi in medium-fat ground beef (23% fat). Ground beef was inoculated with E. coli O157:H7 or Salmonella (106 CFU/g), and each essential oil or one of their main constituents was added separately at a concentration of 0.5% (wt/wt). Meat samples (10 g) were packed under air or under modified atmosphere and irradiated at doses from 0 to 1 kGy for the determination of the D10-value of E. coli O157:H7, and from 0 to 1.75 kGy for the determination of the D10-value of Salmonella Typhi. Depending on the compound tested, the relative radiation sensitivity increased from 1 to 3.57 for E. coli O157:H7 and from 1 to 3.26 for Salmonella Typhi. Addition of essential oils or their constituents before irradiation also reduced the irradiation dose needed to eliminate both pathogens. In the presence of Chinese cinnamon or Spanish oregano essential oils, the minimum doses required to eliminate the bacteria were reduced from 1.2 to 0.35 and from 1.4 to 0.5 for E. coli O157:H7 and Salmonella Typhi, respectively. Cinnamon, oregano, and mustard essential oils were the most effective radiosensitizers.


2011 ◽  
Vol 60 (1) ◽  
pp. 35-41 ◽  
Author(s):  
ALEKSANDRA BUDZYŃSKA ◽  
MARZENA WIĘCKOWSKA-SZAKIEL ◽  
BEATA SADOWSKA ◽  
DANUTA KALEMBA ◽  
BARBARA RÓŻALSKA

The aim of the study was to examine the antibiofilm activity of selected essential oils (EO): Lavandula angustifblia (LEO), Melaleuca alternifolia (TTO), Melissa officinalis (MEO) and some of their major constituents: linalool, linalyl acetate, alpha-terpineol, terpinen-4-ol. Biofilms were formed by Staphylococcus aureus ATCC 29213 and Escherichia coli NCTC 8196 on the surface of medical biomaterials (urinary catheter, infusion tube and surgical mesh). TTC reduction assay was used for the evaluation of mature biofilm eradication from these surfaces. Moreover, time-dependent eradication ofbiofilms preformed in polystyrene 96-well culture microplates was examined and expressed as minimal biofilm eradication concentration (evaluated by MTT reduction assay). TTO, alpha-terpineol and terpinen-4-ol as well as MEO, showed stronger anti-biofilm activity than LEO and linalool or linalyl acetate. Among the biomaterials tested, surgical mesh was the surface most prone to persistent colonization since biofilms formed on it, both by S. aureus and E. coli, were difficult to destroy. The killing rate studies of S. aureus biofilm treated with TTO, LEO, MEO and some of their constituents revealed that partial (50%) destruction of 24-h-old biofilms (MBEC50) was achieved by the concentration 4-8 x MIC after 1 h, whereas 2-4 x MIC was enough to obtain 90% reduction in biomass metabolic activity (MBEC90) after just 4 h of treatment. A similar dose-dependent effect was observed for E. coli biofilm which, however, was more susceptible to the action of phytochemicals than the biofilms of S. aureus. It is noteworthy that an evident decrease in biofilm cells metabolic activity does not always lead to their total destruction and eradication.


Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Larbi Zakaria Nabti ◽  
Farida Sahli ◽  
Hocine Laouar ◽  
Ahmed Olowo-okere ◽  
Joice Guileine Nkuimi Wandjou ◽  
...  

Antibiotics are becoming ineffective against resistant bacteria. The use of essential oils (EOs) may constitute an alternative solution to fight against multidrug-resistant bacteria. This study aims to determine the chemical composition of EOs from five populations of the endemic Algerian Origanum glandulosum Desf. and to investigate their potential antibacterial activity against multidrug-resistant uropathogenic E. coli strains. The EOs were obtained by hydrodistillation and their composition was investigated by gas chromatography/mass spectrometry (GC/MS). The antibacterial activity was evaluated by the disc diffusion method against eight E. coli strains (six uropathogenic resistant and two referenced susceptible strains). Minimum inhibitory and bactericidal concentrations (MIC/MBC) were obtained by the broth microdilution method. The main EO components were thymol (15.2–56.4%), carvacrol (2.8–59.6%), γ-terpinene (9.9–21.8%) and p-cymene (8.5–13.9%). The antibacterial tests showed that all the EOs were active against all the strains, including the multidrug-resistant strains. The EO from the Bordj location, which contained the highest amount of carvacrol (59.6%), showed the highest antibacterial activity (inhibition diameters from 12 to 24.5 mm at a dilution of 1/10). To our knowledge, this is the first description of the activity of O. glandulosum EOs against resistant uropathogenic strains. Our study suggests that O. glandulosum EO could be used in some clinical situations to treat or prevent infections (e.g., urinary tract infections) with multidrug-resistant strains.


2021 ◽  
Vol 10 (7) ◽  
pp. 414-418
Author(s):  
Greeshma Hareendranath

BACKGROUND Escherichia coli is one of the most important causes of urinary tract infections (UTIs). Increased antibiotic resistance may limit the therapeutic options for the treatment of these infections. Fosfomycin trometamol is a phosphonic acid derivative, which acts primarily by interfering with bacterial peptidoglycan synthesis with broad spectrum of activity against agents causing urinary tract infection with good antibiofilm activity and limited reports of resistance and hence is increasingly called upon for the treatment of multi drug resistant (MDR) organisms causing UTI. There are limited studies from India regarding the efficacy of this drug; so, the study was conducted to determine the in vitro efficacy of fosfomycin against uropathogenic MDR E. coli. METHODS This was a prospective study done in the Department of Microbiology, Government T.D. Medical College, Alappuzha, over a period of 1 year from April 2018 to March 2019. A total of 150 MDR urine samples were processed by routine microbiological methods and after identification of E. coli urinary isolates, antibiotic susceptibility testing was performed and results were interpreted following the Clinical and Laboratory Standards Institute guidelines (CLSI). Fosfomycin sensitivity was tested by the Kirby-Bauer disc diffusion method. RESULTS Among the 150 MDR urinary E. coli isolates, 148 (98 %) were sensitive to fosfomycin in our study. The susceptibility rate of fosfomycin was clearly higher than other commonly used drugs for UTI. All extended-spectrum beta-lactamases (ESBL) producing E. coli were sensitive to this drug. The susceptibility for nitrofurantoin was fair, whereas for ampicillin, norfloxacin, cefotaxime and trimethoprim / sulphamethoxazole was found poor. Relatively better rates of resistance were observed for parenteral antibiotics. CONCLUSIONS With an enormous increase in the bacterial pathogens resistant to first-line antibiotics, there has been a revival in the use of fosfomycin. The convenience of a single dose regimen, a good activity proven invitro, and minimal propensity for development of resistance pathogens makes fosfomycin an attractive regimen for the treatment of uncomplicated community and hospital acquired UTIs. In this regard, with the existing limited options for treating MDR organisms, fosfomycin finds its utility acting as an effective and promising option in the treatment of UTIs due to MDR pathogens in the future.


Sign in / Sign up

Export Citation Format

Share Document