scholarly journals Synthesis, Biological Evaluation and Docking Studies of 13-Epimeric 10-fluoro- and 10-Chloroestra-1,4-dien-3-ones as Potential Aromatase Inhibitors

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1783 ◽  
Author(s):  
Rebeka Jójárt ◽  
Péter Traj ◽  
Édua Kovács ◽  
Ágnes Horváth ◽  
Gyula Schneider ◽  
...  

Fluorination of 13-epimeric estrones and their 17-deoxy counterparts was performed with Selectfluor as the reagent. In acetonitrile or trifluoroacetic acid (TFA), 10β-fluoroestra-1,4-dien-3-ones were formed exclusively. Mechanistic investigations suggest that fluorinations occurred via SET in acetonitrile, but another mechanism was operative in TFA. Simultaneous application of N-chlorosuccinimide (NCS) and Selectfluor in TFA led to a 1.3:1 mixture of 10β-fluoroestra-1,4-dien-3-one and 10β-chloroestra-1,4-dien-3-one as the main products. The potential inhibitory action of the 10-fluoro- or 10-chloroestra-1,4-dien-3-one products on human aromatase was investigated via in vitro radiosubstrate incubation. The classical estrane conformation with trans ring anellations and a 13β-methyl group seems to be crucial for the inhibition of the enzyme, while test compounds bearing the 13β-methyl group exclusively displayed potent inhibitory action with submicromolar or micromolar IC50 values. Concerning molecular level explanation of biological activity or inactivity, computational simulations were performed. Docking studies reinforced that besides the well-known Met374 H-bond connection, the stereocenter in the 13 position has an important role in the binding affinity. The configuration inversion at C-13 results in weaker binding of 13α-estrone derivatives to the aromatase enzyme.

2021 ◽  
Vol 14 (10) ◽  
pp. 984
Author(s):  
Marialuigia Fantacuzzi ◽  
Marialucia Gallorini ◽  
Nicola Gambacorta ◽  
Alessandra Ammazzalorso ◽  
Zeineb Aturki ◽  
...  

A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b–c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure–activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b–c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.


2020 ◽  
Vol 17 (7) ◽  
pp. 873-883
Author(s):  
Pulabala Ramesh ◽  
Vankadari Srinivasa Rao ◽  
Puchakayala Muralidhar Reddy ◽  
Katragadda Suresh Babu ◽  
Mutheneni Srinivasa Rao

Background:: Most of the currently available pharmaceutical drugs are either natural products or analogues of natural products. Flavonoids are plant based natural polyphenolic compounds which exhibit a wide range of biological activities. Chrysin, a natural flavone, exhibits several biological activities like antiallergic, anti-inflammatory and anticancer. Many efforts were made to enhance the biological activity of chrysin. In continuation of our work on synthetic modifications of chrysin, amino-alcohol containing heterocyclic moiety is linked to chrysin at C (7) position to enhance its biological activity. Methods:: A series of new C (7) modified analogues of chrysin (3a-k) have been designed and synthesized in two steps. Chrysin, on reacting with epichlorohydrin in the presence of K2CO3 in DMF gave epoxide (2) which was made to react with cyclic secondary amines in the presence of LiBr to form the designed products (3a-k). All the synthesized compounds (3a-k) were well characterized by 1H NMR, 13C NMR and mass spectral data. The synthesized analogues (3a-k) were screened for their in vitro biological activities against a panel of bacterial and fungal strains. Molecular docking studies were also performed on these compounds with E. coli FabH (1HNJ) and S. cerevisiae (5EQB) enzymes, to support the observed biological activities. Results:: A series of new 2-hydroxy 3-amino chrysin derivatives (3a-k) were synthesized in two steps, starting with chrysin and their structures were characterized by spectral analysis. In vitro biological activities of these analogues against a panel of bacterial and fungal strains indicated that some of the derivatives manifested significant activities compared to standard drugs. Molecular docking and binding energy values were also correlated with experimental antimicrobial screening results. Lipinski’s “rule of five” is also obeyed by these analogues (3a-k) and exhibit drug-likeness. Conclusion:: In the present study, a series of new C (7) modified chrysin analogues (3a-k) were synthesized and tested for their in vitro antimicrobial activities. These biological studies indicated that some of the derivatives exhibited moderate to good antimicrobial activities compared to standard drugs. Molecular docking studies performed on these compounds correlated with the experimental antimicrobial activities. The results obtained in the study will be useful in establishing new drug entities to control the pathogenic epidemics.


2020 ◽  
Vol 20 (23) ◽  
pp. 2106-2117
Author(s):  
Martin Krátký ◽  
Šárka Štěpánková ◽  
Michaela Brablíková ◽  
Katarína Svrčková ◽  
Markéta Švarcová ◽  
...  

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias’ treatment. Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. Methods: Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman’s method. We calculated also physicochemical and structural parameters for CNS delivery. Results: The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. Conclusion: Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.


2019 ◽  
Vol 18 (13) ◽  
pp. 1892-1899 ◽  
Author(s):  
Tanushree Pal ◽  
Asmita Sharda ◽  
Bharat Khade ◽  
C. Sinha Ramaa ◽  
Sanjay Gupta

Background: At present, ‘pharmaco-epigenomics’ constitutes the hope in cancer treatment owing to epigenetic deregulation- a reversible process and playing a role in malignancy. Objective: Chemotherapy has many limitations like host-tissue toxicity, drug resistance. Hence, it is imperative to unearth targets to better treat cancer. Here, we intend to repurpose a set of our previously synthesized difluorinated Propanediones (PR) as Histone lysine Methyltransferase inhibitors (HMTi). Methods: The cell lines of leukemic origin viz. histiocytic lymphoma (U937) and acute T-cell leukemia (JURKAT) were treated with PR-1 to 7 after docking studies with active pocket of HMT. The cell cycle analysis, in vitro methylation and cell proliferation assays were carried out to delineate their physiological role. Results: A small molecule PR-4, at 1 and 10µM, has shown to alter the methylation of histone H3 and H4 in both cell lines. Also, treatment shows an increase in G2/M population and a subsequent decrease in the G0/G1 population in U937. In JURKAT, an increase in both G2/M and S phase population was observed. The sub-G1 population showed a steady rise with increase in dose and prolonged time intervals in U937 and JURKAT cell lines. In SRB assay, the PR showed a cell growth of 42.6 and 53.4% comparable to adriamycin; 44.5 and 53.2% in U937 and JURKAT, respectively. The study suggests that PR-4 could emerge as a potential HMT inhibitor. Conclusion: The molecule PR-4 could be a lead in developing more histone lysine methyltransferases inhibitors with potential to be pro-apoptotic agents.


2018 ◽  
Vol 29 (2) ◽  
pp. 92-96
Author(s):  
Amina S. Yusuf ◽  
Ibrahim Sada ◽  
Yusuf Hassan ◽  
Temitope O. Olomola ◽  
Christiana M. Adeyemi ◽  
...  

Abstract The synthesis of five monocarbonyl analogues of curcumin is described. In vitro anti-malarial assay of the compounds was carried out and the effect of the substituents on the aryl ring has been described. The results show that all the five compounds exhibited some reasonable activity against the chloroquine-resistant plasmodium parasite. Molecular docking studies further confirmed the observed biological activity of the compounds.


2020 ◽  
Vol 21 (5) ◽  
pp. 1817 ◽  
Author(s):  
Ming-Yu Song ◽  
Qiu-Rui He ◽  
Yi-Lin Wang ◽  
Hao-Ran Wang ◽  
Tian-Cheng Jiang ◽  
...  

Combretastatin-4 (CA-4) as a tubulin polymerization inhibitor draws extensive attentions. However, due to its weak stability of cis-olefin and poor metabolic stability, structure modifications on cis-configuration are being performed. In this work, we constructed a series of novel CA-4 analogues with linkers on olefin containing diphenylethanone, cis-locked dihydrofuran, α-substituted diphenylethanone, cyclobutane and cyclohexane on its cis-olefin. Cytotoxic activity of all analogues was measured by an SRB assay. Among them, compound 6b, a by-product in the preparation of diphenylethanone analogues, was found to be the most potent cytotoxic agents against HepG2 cells with IC50 values of less than 0.5 μM. The two isomers of 6b induced cellular apoptosis tested by Annexin V-FITC and propidium iodide (PI) double staining, arrested cells in the G2/M phase by PI staining analysis, and disrupted microtubule network by immunohistochemistry study in HepG2 cells. Moreover, 6b-(E) displayed a dose-dependent inhibition effect for tubulin assembly in in vitro tubulin polymerization assay. In addition, molecular docking studies showed that two isomers of 6b could bind efficiently at colchicine binding site of tubulin similar to CA-4.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 10 ◽  
Author(s):  
Hehua Xiong ◽  
Jianxin Cheng ◽  
Jianqing Zhang ◽  
Qian Zhang ◽  
Zhen Xiao ◽  
...  

A series of 4-(pyridin-4-yloxy)benzamide derivatives containing a 1,2,3-triazole fragment were designed, synthesized, and their inhibitory activity against A549, HeLa, and MCF-7 cancer cell lines was evaluated. Most compounds exhibited moderate to potent antitumor activity against the three cell lines. Among them, the promising compound B26 showed stronger inhibitory activity than Golvatinib, with IC50 values of 3.22, 4.33, and 5.82 μM against A549, HeLa, and MCF-7 cell lines, respectively. The structure–activity relationships (SARs) demonstrated that the modification of the terminal benzene ring with a single electron-withdrawing substituent (fluorine atom) and the introduction of a pyridine amide chain with a strong hydrophilic group (morpholine) to the hinge region greatly improved the antitumor activity. Meanwhile, the optimal compound B26 showed potent biological activity in some pharmacological experiments in vitro, such as cell morphology study, dose-dependent test, kinase activity assay, and cell cycle experiment. Finally, the molecular docking simulation was performed to further explore the binding mode of compound B26 with c-Met.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4519 ◽  
Author(s):  
Jiahe Li ◽  
Rongping Liu ◽  
Jinzhang Jiang ◽  
Xing Liang ◽  
Ling Huang ◽  
...  

A series of ZnCl2 complexes (compounds 1–10) with 4′-(substituted-phenyl)-2,2′:6′,2′′-terpyridine that bears hydrogen (L1), p-methyl (L2), p-methoxy (L3), p-phenyl (L4), p-tolyl (L5), p-hydroxyl (L6), m-hydroxyl (L7), o-hydroxyl (L8), p-carboxyl (L9), or p-methylsulfonyl (L10) were prepared and then characterized by 1H NMR, electrospray mass-spectra (ESI-MS), IR, elemental analysis, and single crystal X-ray diffraction. In vitro cytotoxicity assay was used to monitor the antiproliferative activities against tumor cells. Absorption spectroscopy, fluorescence titration, circular dichroism spectroscopy, and molecular modeling studied the DNA interactions. All of the compounds display interesting photoluminescent properties and different maximal emission peaks due to the difference of the substituent groups. The cell viability studies indicate that the compounds have excellent antiproliferative activity against four human carcinoma cell lines, A549, Bel-7402, MCF-7, and Eca-109, with the lowest IC50 values of 0.33 (10), 0.66 (6), 0.37 (7), and 1.05 (7) μM, respectively. The spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalator and induce DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π…π stacking and hydrogen bonds, providing an order of nucleotide sequence binding selectivity as ATGC > ATAT > GCGC. These compounds intercalate into the base pairs of the DNA of the tumor cells to affect their replication and transcription, and the process is supposed to play an important role in the anticancer mechanism.


Author(s):  
Pooja Pisal ◽  
Meenakshi Deodhar ◽  
Amol Kale ◽  
Ganesh Nigade ◽  
Smita Pawar

Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.


Sign in / Sign up

Export Citation Format

Share Document