scholarly journals A New Fluorescent Chemosensor for Cobalt(II) Ions in Living Cells Based on 1,8-Naphthalimide

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3093 ◽  
Author(s):  
Yu-Long Liu ◽  
Liu Yang ◽  
Lu Li ◽  
You-Quan Guo ◽  
Xiao-Xiao Pang ◽  
...  

In this work, a highly selective fluorescent chemosensor N-(2-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)hydrazine-1-carbonothioyl)benzamide (L) was prepared and characterized. An assay to detect the presence of cobalt(II) ions was developed by utilizing turn-on fluorescence enhancement with visual colorimetric response. Upon treatment with Co2+, a remarkable fluorescence enhancement located at 450 nm was visible to naked eyes accompanied with a distinct color change (from pink to colorless) in a CH3CN/HEPES (4/1, v/v, pH = 7.4) solution due to the formation of a 1:1 complex at room temperature. In addition, the linear concentration range for Co2+ was 0–25 µM with the limit of detection down to 0.26 µM. Thus, a highly sensitive fluorescent method based on chelation-assisted fluorescence enhancement was developed for the trace-level detection of Co2+. The sensor was found to be highly selective toward Co2+ ions with a large number of coexisting ions. Furthermore, the L probe can serve as a fluorescent sensor for Co2+ detecting in biological environments, demonstrating its low toxic properties to organisms and good cell permeability in live cell imaging.

RSC Advances ◽  
2016 ◽  
Vol 6 (24) ◽  
pp. 19957-19963 ◽  
Author(s):  
Shiqiang Cui ◽  
Zhaoyan Tian ◽  
Shouzhi Pu ◽  
Yanfeng Dai

A new photochromic diarylethene bearing 8-aminoquinoline unit was designed and synthesized, and the multi-addressable behaviors were investigated. It was highly sensitive towards Mg2+ and Ca2+ with different fluorescence emission and color change.


2014 ◽  
Vol 38 (12) ◽  
pp. 6198-6204 ◽  
Author(s):  
Jiun-Ting Yeh ◽  
Parthiban Venkatesan ◽  
Shu-Pao Wu

A highly sensitive and selective fluorescent probe (FS) is based on a fluoride-specific desilylation reaction to yield a significant green fluorescence enhancement.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2084 ◽  
Author(s):  
Hailong Liu ◽  
Zixu Chen ◽  
Shengyu Feng ◽  
Dengxu Wang ◽  
Hongzhi Liu

Developing novel functional polyhedral oligomeric silsesquioxane (POSS) for various applications is highly desirable. Herein we present the first example of a novel selenone-functionalized POSS (POSS-Se) by treating an imidazolium-containing POSS with selenium powder under mild condition. The structure of POSS-Se was characterized by FT-IR, 1H NMR, 13C NMR, 29Si NMR, and elemental analysis. Acid treatment of POSS-Se results in a hydrophilic red-orange colored solid, which is highly sensitive and selective for the detection of Hg2+ ions in aqueous solutions by visually observing the color change to pale yellow, and to white. Interestingly, POSS-Se has no activity on this detection. This finding is due to the Se–Se formation by acid-treatment and subsequent coordination-induced cleavage upon the addition of Hg2+ ions. The detection behavior can be precisely monitored by a “turn-on” fluorescence phenomenon with the limit of detection (LOD) of 8.48 ppb, comparable to or higher than many reported Hg2+ sensors. Moreover, POSS-Se demonstrates a selective and efficient adsorption of Hg2+ ions with a maximum capacity of 952 mg g–1. The value is higher than most reported adsorbents for Hg2+ ions, typically thiol and/or thioether functional materials, indicating its promise as an efficient adsorbent for the selective removal of Hg2+ ions from industrial wastewater. This work may open up new horizons for the exploration of selenium-containing functional POSS.


Chemosensors ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 38 ◽  
Author(s):  
Pramod D. Jawale Patil ◽  
Rajita D. Ingle ◽  
Sopan M. Wagalgave ◽  
Rajesh S. Bhosale ◽  
Sidhanath V. Bhosale ◽  
...  

Although chemical structural modification of naphthalimides is widely employed for the purpose of sensing explosives, the effects of such modification have been little explored. Herein, we report the design and synthesis of a new naphthalimide-benzothiazole conjugate (1) and its ability to sense various nitrophenols by means of its colorimetric and fluorescent characteristics. Under long-range UV light (365 nm), 1 displayed a color change of its solution from bluish to colorless only upon addition of 2,4,6-trinitrophenol (TNP). Photoluminescence spectroscopy showed quantitative fluorescence quenching by TNP of the emission peaks of 1 at 398 nm and 418 nm due to donor–acceptor electron transfer. The interaction of 1 with TNP was via a cooperative, non-covalent hydrogen-bonding interaction. Receptor 1 exhibited high sensitivity and selectivity towards TNP over various aromatic nitro analytes. The binding constant (K) and Stern–Volmer constant (Ksv) between 1 and TNP were found to be 5.332 × 10−5 M and 2.271 × 106 M−1, respectively. Furthermore, the limit of detection was calculated and found to be as low as 1.613 × 10−10 M.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1424 ◽  
Author(s):  
Xia ◽  
Zhu ◽  
Bian ◽  
Li ◽  
Liu ◽  
...  

A colorimetric sensor, based on the synergistic coordination effect on a gold nanoparticle (AuNP) platform has been developed for the determination of creatinine. The sensor selects citrate stabilized AuNPs as a platform, polyethylene glycol (PEG) as a decorator, and Hg2+ as a linkage to form a colorimetric probe system (PEG/Hg2−–AuNPs). By forming hydrogen bond between the oxygen-containing functional groups of PEG and citrate ions on the surface of AuNPs, this probe shows good stability. PEG coordinated with Hg2+ synergistically and specifically on the surface of dispersed AuNPs, and the existence of creatinine could induce the aggregation of AuNPs with a corresponding color change and an obvious absorption peak shift within 5 min. This PEG/Hg2+–AuNPs probe towards creatinine shows high sensitivity, and a good linear relationship (R2 = 0.9948) was obtained between A620–522 nm and creatinine concentration, which can achieve the quantitative calculations of creatinine. The limit of detection (LOD) of this PEG/Hg2+–AuNPs probe was estimated to be 9.68 nM, lower than that of many other reported methods (Supplementary Materials Table S3). Importantly, the sensitive probe can be successfully applied in a urine simulating fluid sample and a bovine serum sample. The unique synergistic coordination sensing mechanism applied in the designation of this probe further improves its high selectivity and specificity for the detection of creatinine. Thus, the proposed probe may give new inspirations for colorimetric detection of creatinine and other biomolecules.


NANO ◽  
2015 ◽  
Vol 10 (07) ◽  
pp. 1550095 ◽  
Author(s):  
Zhikun Zhang ◽  
Ying Zhou ◽  
Jing-Kui Yang ◽  
Peilong Wang ◽  
Xiaoou Su ◽  
...  

A new method has been proposed to realize the visual detection of Cr 3+ using 4-nitrobenzenethiol (4-NBT) and 4-mercaptobenzoic acid (4-MBA) modified silver nanoparticles ( AgNPs ). The presence of Cr 3+ induces the aggregation of AgNPs through cooperative metal–ligand interaction, resulting in a color change from bright yellow to purple. Consequently, Cr 3+ could be monitored by colorimetric response of AgNPs by a UV-Vis spectrophotometer or even naked eyes. We firstly used ethylene diamine tetraacetic acid (EDTA) as a masking agent to selectively detect Cr 3+, and other metal ions have little influence on the Cr 3+– AgNPs system. The cofunctionalized AgNPs exhibited a highly sensitive detection limit of Cr 3+, which is as low as 5 × 10-9 mol L-1, and the absorbance ratio (A600nm/A387nm) is linear with the concentration of Cr 3+ ranging from 5 × 10-9 mol L-1 to 2 × 10-6 mol L-1 with a coefficient of 0.993. Particularly, the sensor has been further evaluated to monitor the concentration of Cr 3+ in drinking water, the recovery was in good agreement with those obtained by ICP-MS, indicating that this proposed method is successfully applied in real samples.


2017 ◽  
Vol 196 ◽  
pp. 101-111 ◽  
Author(s):  
Lingwei Kong ◽  
Yahui Zhang ◽  
Huiling Mao ◽  
Xiaoling Pan ◽  
Yong Tian ◽  
...  

A novel multi-mode probe consisting of a hexaphenyl-1,3-butadiene derivative, 2,2′-((((1Z,3Z)-1,2,3,4-tetraphenylbuta-1,3-diene-1,4-diyl)bis(4,1-phenylene))bis(methanylylidene))dimalononitrile (ZZ–HPB–CN), with typical aggregation-enhanced emission (AEE) features was easily prepared for the highly sensitive and rapid detection of amine vapors. The ZZ–HPB–CN sensor, which was prepared by simply depositing ZZ–HPB–CN on filter paper, could detect low concentration vapors of volatile amines using fluorescence, ultraviolet and naked-eye detection. The limit of detection of the sensor was as low as 1 ppb for the fluorescence detection. The color change of the sensor caused by 1–10 ppm amine vapors could be observed under UV light or with the naked eye. The high sensitivity, quick response and easy operation of the probe give it great potential for real-life applications.


2019 ◽  
Vol 41 (2) ◽  
pp. 300-300
Author(s):  
Rui Qiao Rui Qiao ◽  
Hai Yun Fan Hai Yun Fan ◽  
Cui Bing Bai Cui Bing Bai ◽  
Ling Dai Ling Dai ◽  
Lin Zhang Lin Zhang ◽  
...  

The fluorescent sensor XQN for Zn2+ based on rhodamine-6G have been designed and synthesized. XQN showed fluorescent specific selectivity and high sensitivity for Zn2+ against other metal ions such as Fe3+, Cr3+, Hg2+, Ag+, Ca2+, Cu2+, Pb2+, Cd2+, Ni2+, Co2+ and Mg2+ in CH3CN-PBS(phosphate buffer saline) (10 mM, v/v=7:3, pH = 7.4) solution. The distinct color change and the rapid emergence of fluorescence emission provided naked-eyes detection for Zn2+. The test strip results showed that these sensors could act as a convenient and efficient Zn2+ test kit. The recognition mechanism of the sensor toward Zn2+ was evaluated by IR and the Job’s plots. The detection limits of XQN towards Zn2+ was calculated as 2.39 and#181;M. In addition, XQN-Zn2+ fluorescence lifetime and fluorescence quantum yield were also measured.


2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


Sign in / Sign up

Export Citation Format

Share Document