scholarly journals Impact of Pesticide Type and Emulsion Fat Content on the Bioaccessibility of Pesticides in Natural Products

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1466
Author(s):  
Ruojie Zhang ◽  
Zipei Zhang ◽  
Ruyi Li ◽  
Yunbing Tan ◽  
Shanshan Lv ◽  
...  

There is interest in incorporating nanoemulsions into certain foods and beverages, including dips, dressings, drinks, spreads, and sauces, due to their potentially beneficial attributes. In particular, excipient nanoemulsions can enhance the bioavailability of nutraceuticals in fruit- and vegetable-containing products consumed with them. There is, however, potential for them to also raise the bioavailability of undesirable substances found in these products, such as pesticides. In this research, we studied the impact of excipient nanoemulsions on the bioaccessibility of pesticide-treated tomatoes. We hypothesized that the propensity for nanoemulsions to raise pesticide bioaccessibility would depend on the polarity of the pesticide molecules. Bendiocarb, parathion, and chlorpyrifos were therefore selected because they have Log P values of 1.7, 3.8, and 5.3, respectively. Nanoemulsions with different oil contents (0%, 4%, and 8%) were fabricated to study their impact on pesticide uptake. In the absence of oil, the bioaccessibility increased with increasing pesticide polarity (decreasing Log P): bendiocarb (92.9%) > parathion (16.4%) > chlorpyrifos (2.8%). Bendiocarb bioaccessibility did not depend on the oil content of the nanoemulsions, which was attributed to its relatively high water-solubility. Conversely, the bioaccessibility of the more hydrophobic pesticides (parathion and chlorpyrifos) increased with increasing oil content. For instance, for chlorpyrifos, the bioaccessibility was 2.8%, 47.0%, and 70.7% at 0%, 4%, and 8% oil content, respectively. Our findings have repercussions for the utilization of nanoemulsions as excipient foods in products that may have high levels of undesirable non-polar substances, such as pesticides.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4258 ◽  
Author(s):  
Kate Basley ◽  
Balin Davenport ◽  
Kate Vogiatzis ◽  
Dave Goulson

There is widespread concern over the use of neonicotinoid pesticides in the agro-ecosystem, due in part to their high water solubility which can lead to widespread contamination of non-target areas including standing surface water. Most studies investigating the negative fitness consequences of neonicotinoids have focused on bees, with little research on the impact on other non-target insects. Here we examined the effect of exposure on the aquatic larval stages of the hoverfly Eristalis tenax L. (Diptera: Syrphidae) to a range of concentrations (control, 5, 15, 50, 100 and 500 ppb) of the neonicotinoid thiamethoxam; no published studies have thus far examined the effects of neonicotinoids on hoverflies. Survival was significantly lower when exposed to 500 ppb thiamethoxam, but this concentration exceeds that likely to be found in the field. We observed no effect on survival, development or any latent effects on adult activity budgets resulting from exposure to lower concentrations (up to 100 ppb). Our results suggest that E. tenax exposed as larvae to thiamethoxam are unlikely to be negatively impacted by this neonicotinoid under field conditions.


2017 ◽  
Vol 71 (11) ◽  
pp. 2512-2518 ◽  
Author(s):  
Ryan P. Ferrie ◽  
Gregory E. Hewitt ◽  
Bruce D. Anderson

Fluorescence quenching was used to investigate the interaction of six fluoroquinolones with humic acid. Static quenching was observed for the binding of ciprofloxacin, enoxacin, fleroxacin, levofloxacin, norfloxacin, and ofloxacin to humic acid. The equilibrium binding constants were found from Stern–Volmer plots of the data. The quenching experiments were repeated over a temperature range of 25–45 ℃ and van’t Hoff plots were generated. From these linear plots, thermodynamic values were calculated for Δ H, Δ G, and Δ S for each of the fluoroquinolones. The equilibrium binding constants were found to be <1 for all the antibiotics studied. The calculated ΔH values were all negative and ranged from −9.5 to −27.6 kJ/mol. The high water solubility of the antibiotics and low ΔH of binding suggests that the antibiotics will be transported easily through the environment. Finally, whether the fluoroquinolones are in a protonated, deprotonated, or partially protonated state is found to correlate to the strength of binding to humic acid.


Author(s):  
Tatiyana V. Serebryanskaya ◽  
Alexander S. Lyakhov ◽  
Ludmila S. Ivashkevich ◽  
Yuri V. Grigoriev ◽  
Andreii S. Kritchenkov ◽  
...  

AbstractNovel platinum(II) and palladium(II) chlorido complexes with tetrazole derivatives 1-(2-hydroxyethyl)tetrazole (het) and 1-[tris(hydroxymethyl)methyl]tetrazole (thm), viz. cis-[Pt(het)2Cl2], trans-[Pt(het)2Cl2], trans-[Pt(thm)2Cl2], trans-[Pd(het)2Cl2], and trans-[Pd(thm)2Cl2], were synthesized. The compounds were characterized by elemental and high-resolution electrospray ionization (HRESI) mass spectrometry, high-performance liquid chromatography (HPLC), 1H, 13C and 195Pt nuclear magnetic resonance (NMR) spectroscopy, thermal analyses, and Infrared (IR) spectroscopy. Molecular and crystal structures of trans-[PdL2Cl2] and trans-[PtL2Cl2] (L = het, thm) were established by single-crystal X-ray analysis. The complex cis-[Pt(het)2Cl2] was found to undergo cis–to–trans isomerization upon heating in acetonitrile solution and in the solid state. The synthesized complexes show rather high water solubility lying in the range of 2–10 mg/L.


2021 ◽  
Author(s):  
Narges Ghadi

A mathematical model was developed to simulate emulsion polymerization in batch, semi-batch and continuous reactors for monomers with high water solubility and significant desorption such as vinyl acetate. The effects of operating conditions such as initiator and emulsifier concentration as well as reactor temperature have been studied. The simulation results revealed the sensitivity of polymer properties and monomer conversion to variation of these operating conditions. Furthermore, the impact of monomer soluble impurities on reduction of monomer conversion has been investigated. In order to control polymer molecular weight, application of chain transfer agents such as t-nonyl mercaptan was suggested. Generally, the simulation results fitted well [with] experimental data from the literature. Several optimizing policies were considered to enhance the reaction operation for better product quality. During continuous polymerization, the reactor demonstrates oscillatory behavior throughout the operation. A new reactor train configuration was consistent with the aim of damping the oscillations and producing high-quality latex.


Proceedings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
◽  
Emilia Tojo

The transformation of two solid Active Pharmaceutical Ingredients (APIs) into new ionic liquids (IL)s that incorporate APIs (API-ILs) is reported. The structures of the APIs (indomethacin and mebendazole) were selected by their susceptibility to being transformed into API-ILs (either to form the cation or the anion) and their limited bioavailability due to their low solubility in water. The counterions, such as those derived from 2-dimethylaminoethanol (DMEA), tetramethylguanidine (TMG), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,4-diazabicyclo[2.2.2] (TED), <i>p</i>-toluensulfonic acid, glycolic acid, methanesulfonic acid, and saccharin, were carefully chosen, aiming for high biocompatibility, low toxicity, and high water solubility. The synthesis was carried out by direct treatment of the API with the corresponding selected acid or base. Finally, the solubility in water of all the synthesized salts was determined.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3272
Author(s):  
Nimisha Bhattarai ◽  
Mi Chen ◽  
Rocío L. Pérez ◽  
Sudhir Ravula ◽  
Robert M. Strongin ◽  
...  

Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties that result from their lipophilic cationic structures. In previous research, we have found that conversion of Rhodamine 6G into nanoGUMBOS, i.e., nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS), led to selective chemotherapeutic toxicity for cancer cells over normal cells. Herein, we investigate the chemotherapeutic activity of GUMBOS derived from four different rhodamine derivatives, two bearing an ester group, i.e., Rhodamine 123 (R123) and SNAFR-5, and two bearing a carboxylic acid group, i.e., rhodamine 110 (R110) and rhodamine B (RB). In this study, we evaluate (1) relative hydrophobicity via octanol–water partition coefficients, (2) cytotoxicity, and (3) cellular uptake in order to evaluate possible structure–activity relationships between these different compounds. Intriguingly, we found that while GUMBOS derived from R123 and SNAFR-5 formed nanoGUMBOS in aqueous medium, no distinct nanoparticles are observed for RB and R110 GUMBOS. Further investigation revealed that the relatively high water solubility of R110 and RB GUMBOS hinders nanoparticle formation. Subsequently, while R123 and SNAFR-5 displayed selective chemotherapeutic toxicity similar to that of previously investigated R6G nanoGUMBOS, the R110 and RB GUMBOS were lacking in this property. Additionally, the chemotherapeutic toxicities of R123 and SNAFR-5 nanoGUMBOS were also significantly greater than R110 and RB GUMBOS. Observed results were consistent with decreased cellular uptake of R110 and RB as compared to R123 and SNAFR-5 compounds. Moreover, these results are also consistent with previous observations that suggest that nanoparticle formation is critical to the observed selective chemotherapeutic properties as well as the chemotherapeutic efficacy of rhodamine nanoGUMBOS.


RSC Advances ◽  
2014 ◽  
Vol 4 (23) ◽  
pp. 11872-11875 ◽  
Author(s):  
Hong Huang ◽  
Ya-Chun Lu ◽  
Ai-Jun Wang ◽  
Jin-Hua Liu ◽  
Jian-Rong Chen ◽  
...  

A simple, solvent-free method was developed for preparation of fluorescent NSCPs by direct pyrolysis of gentamycin sulfate. The NSCPs showed high water-solubility, long lifetime, high quantum yield, excellent stability and low cytotoxicity, and thus can be used for cellular imaging.


Weed Science ◽  
1979 ◽  
Vol 27 (2) ◽  
pp. 158-161 ◽  
Author(s):  
A. Rahman ◽  
L. J. Matthews

The influence of soil organic matter on the initial and residual phytotoxicity of thirteens-triazine herbicides was investigated in greenhouse experiments using three Horotiu sandy loam soils with organic matter levels of 9.8, 15.5, and 20.6%. The amount of herbicide required to reduce the growth of oats (Avena sativaL. ‘Mapua’) by 50% (GR50) when compared with the control was determined for each herbicide and each organic matter level. Results showed that the GR50values for all herbicides were highly and positively correlated with the soil organic matter. In general, the phytotoxicity of compounds of high water solubility was less influenced by soil organic matter than those having low water solubility. The chloro-triazines persisted longer in soil than did the methoxy- or methylthio-triazines. Simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] and atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] were the most persistent of the chloro-triazines.


Sign in / Sign up

Export Citation Format

Share Document