scholarly journals Development of Water-in-Oil Emulsions as Delivery Vehicles and Testing with a Natural Antimicrobial Extract

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2105
Author(s):  
Giovana Colucci ◽  
Arantzazu Santamaria-Echart ◽  
Samara C. Silva ◽  
Isabel P. M. Fernandes ◽  
Caroline C. Sipoli ◽  
...  

Water-in-oil (W/O) emulsions have high potential for several industrial areas as delivery systems of hydrophilic compounds. In general, they are less studied than oil-in-water (O/W) systems, namely in what concerns the so-called fluid systems, partly due to problems of instability. In this context, this work aimed to produce stable W/O emulsions from a natural oil, sweet almond oil, to be further tested as vehicles of natural hydrophilic extracts, here exemplified with an aqueous cinnamon extract. Firstly, a base W/O emulsion using a high-water content (40/60, v/v) was developed by testing different mixtures of emulsifiers, namely Tween 80 combined with Span 80 or Span 85 at different contents. Among the tested systems, the one using a 54/46 (v/v) Span 80/Tween 80 mixture, and subjected to 12 high-pressure homogenizer (HPH) cycles, revealed to be stable up to 6 months, being chosen for the subsequent functionalization tests with cinnamon extract (1.25–5%; w/v; water-basis). The presence of cinnamon extract leaded to changes in the microstructure as well as in the stability. The antimicrobial and antioxidant analysis were evidenced, and a sustained behavior compatible with an extract distribution within the two phases, oil and water, in particular for the higher extract concentration, was observed.

Author(s):  
Plúvia O. Galdino ◽  
Rossana M. F. de Figueirêdo ◽  
Alexandre J. de M. Queiroz ◽  
Pablícia O. Galdino ◽  
Tâmila K. da S. Fernandes

ABSTRACT The stability of cactus-pear powder, obtained by the process of spray drying for 40 days, was evaluated under controlled conditions of relative air humidity (83%) and temperature (25 and 40 °C). The whole pulp was characterized with regard to its physico-chemical parameters: pH, total titratable acidity, soluble solids, water content, total solids, ashes, reducing sugars, total sugars, non-reducing sugars, luminosity, redness, yellowness and water activity. The stored samples in powder were evaluated every 10 days for water content, water activity, total titratable acidity and color (luminosity, redness and yellowness). The whole pulp was slightly acidic and perishable, due to the high water content. During storage, the packages did not prevent water absorption, thus increasing water content and, consequently, water activity. Yellowness oscillated along the storage time, but the predominance of the yellow color was not affected.


Buletin Palma ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 31
Author(s):  
Linda Trivana ◽  
Nugraha E. Suyatma ◽  
Dase Hunaefi ◽  
S. Joni Munarso

<p>Virgin coconut oil (VCO) is high quality coconut oil and categorized as the healthiest oil and functional foods. Based on these benefits, the development of a VCO in emulsion product might increase the human consumption of coconut oil because consumers dislike the only taste of pure VCO. The aim of this study was to develop the water compatible form of VCO through nano-emulsification. The effect of different types and amounts of surfactants (Tween 80 and Span 80) on the physio-chemical characteristic of emulsion containing VCO was investigated. VCO based emulsions were prepared with the aid of Ultra-Turrax homogenizer. Emulsions were developed by adding and mixing VCO with surfactants. The ratio of Tween 80 and Span 80 used were 0:10, 2.5:7.5, 5:5, 7.5:2.5, and 10:0. The droplet size of nanoemulsions consisting of Tween 80:Span 80 (0:10, 2.5:7.5, 5:5, 7.5:2.5, and 10:0) were 1.343, 0.606, 0.829, 1.439, and 2.506µm, respectively. Based on the TEM analysis and polydispersity index (PDI) &gt;0.5 showed the oil droplets are in not uniform shape, indicating a unstable emulsion. VCO emulsion with ratio Tween 80:Span 80 (0:10) obtained a homogeneous emulsion (stable) compare than that of others and w/o type emulsion. The stability of emulsion is evaluated by turbidity measurement using UV-VIS spectrophotometer with wavelength 502 nm. A combination of  treatments (ambient condition, thermal treatmeant (40°C)), and centrifuge) of VCO emulsion has resulted on thermal treat, the turbidity measured from the emulsion was higher than the other emulsion, reflecting the presence of the smaller droplets in this emulsion.</p>


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7981
Author(s):  
Roxana P. F. de Sousa ◽  
Glauco S. Braga ◽  
Raphael R. da Silva ◽  
Giovanna L. R. Leal ◽  
Júlio C. O. Freitas ◽  
...  

This work has developed and evaluated a microemulsion-based drilling fluid formulation with characteristics to be applied in oil wells. The microemulsion was formulated with a solution of water/glycerol, pine oil, and Tween 80, a nonionic and biodegradable surfactant. The physical and chemical properties of the drilling fluid obtained in this work were investigated through rheology and filtration analysis, solids content, aging, lubricity, toxicity, and thermal degradation. A non-toxic microemulsion-based drilling fluid oil-in-water (O/W) with high lubricity (0.07638) and thermal stability was obtained with suitable viscosity, gel strength and low fluid loss (4.0 mL), low solids content (6%), stability in a wide range of salinity conditions, and the possibility of high water content (above 85% in mass fraction). The fluid presented a pseudoplastic behavior, and statistically significant Herschel–Bulkley parameters were obtained.


2013 ◽  
Vol 411-414 ◽  
pp. 3125-3128
Author(s):  
Xue Feng Wang

Recently, the effective use promotion of the low quality soil is requested as a social request. Because the number of construction generation soils has increased. Therefore, it is necessary to use even cohesive soils, which are high water content and volcanic like andosol that has not been used up to now. The low quality soil is expected making a high fill become possible by using it by reinforcement material together with Sandwich method that has giving of shear strength and drainage functions. In this study, it experimented with centrifuge load model test on reinforcement fill by sandwich method. And, it is the one to understand the effect of drainage and reinforcement of that change in soil pressure etc.


2014 ◽  
Vol 1065-1069 ◽  
pp. 96-99
Author(s):  
Hai Ying Hu ◽  
Xiao Wen Zhou ◽  
Zhi Xing Huang

The soft soil in Pearl River Delta regions is characterized with high water content, high compressibility and low bearing capacity. Therefore, when building the structures on such foundation, it’s necessary to pay attention to the deformation and stability. The projects' practice shows that, when analyzing the stability on foundation pit or slope with soft interlayer, it should not only calculate the overall stability of the slope, but also calculate the stability or bearing capacity of the foundation. Although sometimes the stability of the slope meets the requirements, it doesn’t means that the bearing capacity of the foundation meets the requirements because of the existence soft interlayer, the limitations of the circle slice method and the difference between the sliding surface and the actual sliding surface.


1982 ◽  
Vol 19 (3) ◽  
pp. 524-539 ◽  
Author(s):  
J. J. Clague ◽  
J. G. Souther

A large (ca. 5 × 106 m3) landslide occurred on the west flank of Mount Cayley in the southern Coast Mountains of British Columbia in 1963. Failure commenced when a large block of poorly consolidated tuff breccia and columnar-jointed dacite was detached from the subvolcanic basement and slid into the valley of Dusty Creek, a small tributary of Turbid Creek. As the detached block accelerated, it quickly fragmented into an aggregate consisting of angular clasts up to several metres across, partially supported by a matrix of fine comminuted rock material. The landslide debris moved about 1 km down Dusty Creek as a wedge-shaped mass up to 70 m thick, banking up on turns and attaining a maximum velocity of 15–20 m/s. The debris mass thinned as it spread across the broader, flatter valley of Turbid Creek, and was deposited as an irregular blanket with a maximum thickness of 65 m along a 1 km length of this valley. As a result of the landslide, Turbid and Dusty Creeks were blocked, and lakes formed behind the debris. These debris dams were soon overtopped and rapidly breached, causing floods and probably debris flows to sweep down Turbid Creek valley far beyond the terminus of the landslide.From an analysis of the annual rings of slide-damaged trees, it is concluded that the landslide probably occurred in July 1963. Although the largest earthquake of 1963 and a moderately intense rainstorm also occurred during this month, there were much larger earthquakes and storms in this area on many previous occasions, and these did not cause large slope failures. Thus, it appears that the stability of the slope at the head of Dusty Creek gradually deteriorated over a long period of time until a relatively minor event, such as a small earthquake or storm, triggered the failure.The main contributing factors to this landslide are geologic and include the presence of: (1) hydrothermally altered faults and fractures in poorly lithified pyroclastic rocks and in jointed volcanic flows; (2) an outward-sloping unconformity separating the Quaternary volcanic sequence from older basement rocks; and (3) fractured glassy selvages surrounding small intrusions in the base of the volcanic pile.Deposits of one or more landslides that predate the 1963 event also occur in Turbid Creek valley. These older deposits are present over a much larger area than the 1963 slide deposits and probably were emplaced by highly mobile debris flows with high water content.


2021 ◽  
Vol 266 ◽  
pp. 01005
Author(s):  
A.V. Lekomtsev ◽  
I.B. Stepanenko

Treatment of production fluids to meet the requirements of the first quality group for commercial purposes is becoming more relevant every year in the Perm Region. Most operational facilities are in the final stages of development and characterized by the high water content of production fluids, which later leads to the formation of water-in-oil emulsions (WOEs) during transportation and field preparation. When treated by traditional methods, such as thermal and thermo chemical gravity sedimentation, stable WOEs are not amenable to destruction. These preparation methods are easy to use but do not always provide the expected result. In this regard, an urgent task is to develop and implement new technologies for the preparation of hydrocarbons, which can be used separately from traditional methods, or in combination with them. This method is called ultrasound impact (USI). This article describes regularities in the influence of various parameters on the efficiency of stable water-in-oil emulsion destruction during field-based treatment with the use of USI. The paper describes the experience of using USI, as well as the high destruction efficiency of stable water-in-oil emulsions in comparison with traditional methods. The authors of the article conducted pilot tests using a mobile unit for treating production fluids with stable WOEs pre-treated by ultrasound. Following test results, the technological effect has been evaluated and recommendations for the practical application of the proposed method have been made.


2021 ◽  
Vol 11 (24) ◽  
pp. 12102
Author(s):  
Kaixi An ◽  
Duanyang Zhuang ◽  
Weian Lin ◽  
Albert Argilaga ◽  
Yunmin Chen ◽  
...  

Storage sludge has high water content and low shear strength, which limits the capacity expansion of overlying municipal landfilling. Few studies have addressed the field treatment of large amounts of storage sludge due to the variability of the depth of geotechnical property. This paper proposes a stratified treatment method for storage sludge, based on the in situ characterization of layered sedimentary patterns of the storage sludge acquired from the Qizishan landfill in China. Additionally, the stability of the landfilling above the sludge pond is analyzed using the Morgenstern–Price and limit equilibrium slice method, which considers the layered strength properties of solidified sludge. The treated sludge has a significant decrease in average water content from 1398% to 88% and an increase in average cohesion to 23.52 kPa. The high content of clay particles, low amount of solidification products, and high water content together result in the high sensitivity to the water content of the strength of deep solidified sludge. For a 40-m high waste body, stability analysis suggests a sliding surface across the raw sludge pond, while the critical surface remains outside the treated sludge pond and the safety factor is increased from 0.934 to 1.464. The validated stratified treatment provides valuable references for the treatment of deep sludge.


2008 ◽  
Vol 63 (18) ◽  
pp. 4570-4579 ◽  
Author(s):  
David Greaves ◽  
John Boxall ◽  
James Mulligan ◽  
E. Dendy Sloan ◽  
Carolyn A. Koh

Sign in / Sign up

Export Citation Format

Share Document