scholarly journals Characterization of Ionic Liquid Lignins Isolated from Spruce Wood with 1-Butyl-3-methylimidazolium Acetate and Methyl Sulfate and Their Binary Mixtures with DMSO

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2479 ◽  
Author(s):  
Artyom V. Belesov ◽  
Anton V. Ladesov ◽  
Ilya I. Pikovskoi ◽  
Anna V. Faleva ◽  
Dmitry S. Kosyakov

Ionic liquids (ILs) based on 1-butyl-3-methylimidazolium (bmim) cation have proved to be promising solvents for the fractionation of plant biomass with the production of cellulose and lignin. This study deals with the characterization of lignins isolated from coniferous (spruce) wood using [bmim]OAc and [bmim]MeSO4 ionic liquids and their binary mixtures with DMSO (80:20). Molecular weight distributions, functional composition, and structural features of IL lignins were studied by size-exclusion chromatography, NMR spectroscopy (1D and 2D) and atmospheric pressure photoionization high-resolution mass spectrometry. It was shown that the interaction of ILs with lignin leads to significant chemical changes in the biopolymer; a decrease in the degree of polymerization and in the content of free phenolic hydroxyl groups due to alkylation, the disappearance (in the case of [bmim]OAc) of carbonyl groups and a significant destruction of β-O-4 bonds. The chemical reactions between lignin and 1-butyl-3-methylidazolium cation with covalent binding of ionic liquids or products of their decomposition is evidenced by the presence of a large number of nitrogen-containing oligomers in IL lignins.

2021 ◽  
Author(s):  
Santiago Pablo Fernandez Bordin ◽  
Juan Manuel Padró ◽  
Víctor Galván Josa ◽  
Marcelo Ricardo Romero

In past decades, the combination of polymers to obtain blends in film shapes has been a very effective strategy to meet the needs of the increasingly demanding market. In this sense, pH- and thermo-sensitive (PHT) polymers have recently drawn the attention of researchers for their countless applications. However, binary mixtures of typical PHTs like polyacrylic acid (p-AAc) and poly-N-isopropylacrylamide (p-NIPAm) were unable to form films. In this sense, it was hypothesized that NIPAm copolymerized with AAc monomers can yield blends with virtually the same functional group composition of binary mixtures of p-NIPAm and p-AAc homopolymers but with different properties of film formation. For this, a copolymeric radical synthesis and the subsequent analytical studies were complemented to get a broad description of these materials. P-NIPAm and p-AAc homopolymers and different proportions of copolymers p-NIPAm-co-AAc were obtained and thoroughly characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Size Exclusion Chromatography (SEC), acid-basic titration, and rotational rheology. Among the samples, the solutions of p-AAc with p-NIPAm and p-NIPAm-co-AAc copolymers with a higher proportion of NIPAm units (0.8 and 0.6 NIPAm/AAc) precipitated as interpolymer complexes. Since it was expected, the combination with p-NIPAm-co-AAc 40/60 copolymer, which has a higher proportion of AAc groups and pH sensitivity, allowed obtaining blends suitable for the preparation of films. Furthermore, despite the fact that the combinations of p-NIPAm-co-AAc 40/60 with p-NIPAm-co-AAc 80/20 or p-NIPAm were successful, the mechanical properties of the films are worse compared to the other blends, leaving this issue open for subsequent studies.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Anderson Guerra ◽  
Lucian A. Lucia ◽  
Dimitris S. Argyropoulos

Abstract Despite the growing importance of Eucalyptus wood as raw material for pulp and paper, there is a lack of knowledge on the chemistry of their macromolecular components. The present paper addresses this issue by applying the recently developed protocol for isolating enzymatic mild acidolysis lignins (EMAL) from Eucalyptus grandis, Eucalyptus globulus and the softwood species Douglas fir and white fir, which were used for comparative purposes. The structures of EMALs were investigated by quantitative 31P NMR, DFRC/31P NMR (derivatization followed by reductive cleavage followed by quantitative 31P NMR) and size exclusion chromatography (SEC). Overall, the yields of EMALs isolated from Eucalyptus were higher than those from the softwoods examined. Lignin from E. globulus was found to contain higher contents of arylglycerol-β-aryl ether structures, free phenolic hydroxyl groups and syringyl-type units than lignin from E. grandis. New insights provided by the DFRC/31P NMR revealed that up to 62.2% of arylglycerol-β-aryl ether structures in E. globulus are uncondensed, while in E. grandis the amount of such uncondensed structures was found to be lower than 48%. SEC analyses showed that lignins from E. grandis and softwoods associate in greater extension than lignin from E. globulus.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.


Author(s):  
P.A. Crozier ◽  
M. Pan

Heterogeneous catalysts can be of varying complexity ranging from single or double phase systems to complicated mixtures of metals and oxides with additives to help promote chemical reactions, extend the life of the catalysts, prevent poisoning etc. Although catalysis occurs on the surface of most systems, detailed descriptions of the microstructure and chemistry of catalysts can be helpful for developing an understanding of the mechanism by which a catalyst facilitates a reaction. Recent years have seen continued development and improvement of various TEM, STEM and AEM techniques for yielding information on the structure and chemistry of catalysts on the nanometer scale. Here we review some quantitative approaches to catalyst characterization that have resulted from new developments in instrumentation.HREM has been used to examine structural features of catalysts often by employing profile imaging techniques to study atomic details on the surface. Digital recording techniques employing slow-scan CCD cameras have facilitated the use of low-dose imaging in zeolite structure analysis and electron crystallography. Fig. la shows a low-dose image from SSZ-33 zeolite revealing the presence of a stacking fault.


1999 ◽  
Vol 40 (9) ◽  
pp. 207-214 ◽  
Author(s):  
J.-P. Croué ◽  
D. Violleau ◽  
C. Bodaire ◽  
B. Legube

The objective of this work was to compare the affinity of well characterized NOM fractions isolated from two surface waters with strong (gel matrix and macroporous matrix) and weak anion exchange resins (AER) using batch experiment conditions. The structural characterization of the fraction of NOM has shown that the higher the hydrophilic character, the lower the C/O atomic ratio, the lower the SUVA, the lower the aromatic carbon content and the lower the molecular weight. In general (not always), strong AER was more efficient to remove DOC than weak AER. For the same water source (Suwannee River), the higher the molecular weight of the NOM fraction, the lower the affinity with AER. Increasing the ionic strength favored the removal of the hydrophobic NOM fraction (“salting out” effect) while increasing the pH apparently reduced the removal of the hydrophilic NOM fraction. Results were discussed in terms of size exclusion, adsorption, anion exchange and also hydrophobic/hydrophilic repulsion.


Langmuir ◽  
2008 ◽  
Vol 24 (17) ◽  
pp. 9500-9507 ◽  
Author(s):  
Claudia Kolbeck ◽  
Manuela Killian ◽  
Florian Maier ◽  
Natalia Paape ◽  
Peter Wasserscheid ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1617-1630
Author(s):  
Leonard Duncan ◽  
Kristine Bouckaert ◽  
Fay Yeh ◽  
David L Kirk

Abstract Retrotransposons play an important role in the evolution of genomic structure and function. Here we report on the characterization of a novel retrotransposon called kangaroo from the multicellular green alga, Volvox carteri. kangaroo elements are highly mobile and their expression is developmentally regulated. They probably integrate via double-stranded, closed-circle DNA intermediates through the action of an encoded recombinase related to the λ-site-specific integrase. Phylogenetic analysis indicates that kangaroo elements are closely related to other unorthodox retrotransposons including PAT (from a nematode), DIRS-1 (from Dictyostelium), and DrDIRS1 (from zebrafish). PAT and kangaroo both contain split direct repeat (SDR) termini, and here we show that DIRS-1 and DrDIRS1 elements contain terminal features structurally related to SDRs. Thus, these mobile elements appear to define a third class of retrotransposons (the DIRS1 group) that are unified by common structural features, genes, and integration mechanisms, all of which differ from those of LTR and conventional non-LTR retrotransposons.


Sign in / Sign up

Export Citation Format

Share Document