scholarly journals N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamides: Molecular Docking, Synthesis, and Biological Investigation as Anticancer Agents

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 73
Author(s):  
Dima A. Sabbah ◽  
Rawan A. Haroon ◽  
Sanaa K. Bardaweel ◽  
Rima Hajjo ◽  
Kamal Sweidan

Cancer is a multifactorial disease and the second leading cause of death worldwide. Diverse factors induce carcinogenesis, such as diet, smoking, radiation, and genetic defects. The phosphatidylinositol 3-kinase (PI3Kα) has emerged as an attractive target for anticancer drug design. Eighteen derivatives of N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamide were synthesized and characterized using FT-IR, NMR (1H and 13C), and high-resolution mass spectra (HRMS). The series exhibited distinct antiproliferative activity (IC50 µM) against human epithelial colorectal adenocarcinoma (Caco-2) and colon carcinoma (HCT-116) cell lines, respectively: compounds 16 (37.4, 8.9 µM), 18 (50.9, 3.3 µM), 19 (17.0, 5.3 µM), and 21 (18.9, 4.9 µM). The induced-fit docking (IFD) studies against PI3Kαs showed that the derivatives occupy the PI3Kα binding site and engage with key binding residues.

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5348
Author(s):  
Dima A. Sabbah ◽  
Shaima’ E. Hasan ◽  
Reema Abu Khalaf ◽  
Sanaa K. Bardaweel ◽  
Rima Hajjo ◽  
...  

The emergence of phosphatidylinositol 3-kinase (PI3Kα) in cancer development has accentuated its significance as a potential target for anticancer drug design. Twenty one derivatives of N-phenyl-4-hydroxy-6-methyl-2-quinolone-3-carboxamide were synthesized and characterized using NMR (1H and 13C) and HRMS. The derivatives displayed inhibitory activity against human epithelial colorectal adenocarcinoma (Caco-2) and human colon cancer (HCT-116) cell lines: compounds 8 (IC50 Caco-2 = 98 µM, IC50 HCT-116 = 337 µM) and 16 (IC50 Caco-2 = 13 µM, IC50 HCT-116 = 240.2 µM). Results showed that compound 16 significantly affected the gene encoding AKT, BAD, and PI3K. The induced-fit docking (IFD) studies against PI3Kα demonstrated that the scaffold accommodates the kinase domains and forms H-bonds with significant binding residues.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5581
Author(s):  
Raju Suresh Kumar ◽  
Dhaifallah M. Al-thamili ◽  
Abdulrahman I. Almansour ◽  
Natarajan Arumugam ◽  
Faruq Mohammad

With an aim to develop more effective and affordable anticancer agents possessing a unique mechanism of action, we designed and synthesized derivatives of spirooxindole-pyrrolidine heterocyclic hybrids in good yields through a one-pot three-component (3+2) cycloaddition strategy. The synthesized compounds were characterized thoroughly for the physicochemical properties by making use of FT-IR, NMR spectroscopy, and mass spectrometry. Further, these compounds have been evaluated for the influence of anticancer activity against HepG2 cells up to 200 µg/mL concentration. The highly active molecular scaffold was tested for the in-depth mechanistic studies, and it was found that the major pathway of cell death is apoptosis which occurs through the induction of reactive oxygen species followed by the involvement of caspases.


2020 ◽  
Vol 38 (3B) ◽  
pp. 128-141
Author(s):  
Nadia A. Betti ◽  
Redha Ib. Hussain ◽  
Sahar Ab. Kadhem

New derivatives of pyrrolidine-2-one have been synthesized through lactamization of γ –butyrolactone (GBL) by hydrazine hydrate (80%), ethylene diamine and ethanol amine to afford compounds (1-aminopyrrolidin-2-one), (1-(2-aminoethyl)pyrrolidine-2-one) and (1-(2-hydroxyethyl)pyrrolidine-2-one), respectively. Compound (1-aminopyrrolidin-2-one) underwent several reactions to synthesize the rest of these derivatives. All synthesized compounds were approved by their FT-IR, 1H-NMR and some by Mass spectra. The biological activities of these derivatives were evaluated against Escherichia coli and Staphylococcus aureus. Many of these derivatives showed moderate biological activity against one or both kind of bacteria in comparison to amoxicillin and some showed no biological activity at all.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5862
Author(s):  
Perumal Gobinath ◽  
Ponnusamy Packialakshmi ◽  
Ali Daoud ◽  
Saud Alarifi ◽  
Akbar Idhayadhulla ◽  
...  

In this study, the synthesis of one-pot 10-phenyl-3,4,6,7-tetrahydro-1H-spiro [acridine-9,2′-indoline]-1,3,8-trione derivatives was achieved via a four-component cyclocondensation reaction, which was carried out in solvent-free conditions, and using p-toluenesulfonic acid (p-TSA) as a catalyst. The product was confirmed by FT-IR, 1H-NMR, 13C-NMR, mass spectra, and elemental analysis. Furthermore, the anticancer activity was screened for all compounds. Among these compounds, compound 1c was more effective (GI50 0.01 µm) against MCF-7 cancer cell lines than standard and other compounds. Therefore, the objective of this study was achieved with a few promising molecules having been demonstrated to be potential anticancer agents.


2020 ◽  
Vol 17 ◽  
Author(s):  
Somaye Mohammadi ◽  
Hossein Naeimi

Aims and Objective: Synthesis of novel bis-spirooxindoles was carried out from isatins, two equivalents of malononitrile and various derivatives of cyclohexanones. Background : A facile one-pot and four-component reaction was investigated for the synthesis of novel bis-spirooxindoles from different derivatives of isatins, two equivalents of malononitrile and various derivatives of cyclohexanone in the presence of magnetic CoFe2O4@MCM-41@MgO NPS catalyst under mild condition. Materials and Methods: Firstly, the magnetic CoFe2O4@MCM-41@MgO was prepared during three steps. Afterward, the CoFe2O4@MCM-41@MgO was used as a base catalyst for one-pot synthesis of bis-spirooxindoles. Results and Discussion: The procedure exhibited several benefits, excellent yield of products, short reaction times, reusability and recyclability of the nanocatalyst. Conclusion: The structure of nanocatalyst was recognized by FT-IR, XRD, VSM, SEM, BET and EDX techniques, and the structure of the organic products was determined with melting point, FT-IR, 1H NMR, 13C NMR, Mass spectra and C.H.N analyses.


2019 ◽  
Vol 19 (4) ◽  
pp. 439-452 ◽  
Author(s):  
Mohamed R. Selim ◽  
Medhat A. Zahran ◽  
Amany Belal ◽  
Moustafa S. Abusaif ◽  
Said A. Shedid ◽  
...  

Objective: Conjugating quinolones with different bioactive pharmacophores to obtain potent anticancer active agents. Methods: Fused pyrazolopyrimidoquinolines 3a-d, Schiff bases 5, 6a-e, two hybridized systems: pyrazolochromenquinoline 7 and pyrazolothiazolidinquinoline 8, different substituted thiazoloquinolines 13-15 and thiazolo[3,2-a]pyridine derivatives 16a-c were synthesized. Their chemical structures were characterized through spectral and elemental analysis, cytotoxic activity on five cancer cell lines, caspase-3 activation, tubulin polymerization inhibition and cell cycle analysis were evaluated. Results: Four compounds 3b, 3d, 8 and 13 showed potent activity than doxorubicin on HCT116 and three compounds 3b, 3d and 8 on HEPG2. These promising derivatives showed increase in the level of caspase-3. The trifloromethylphenyl derivatives of pyrazolopyrimidoquinolines 3b and 3d showed considerable tubulin polymerization inhibitory activity. Both compounds arrested cell cycle at G2/M phase and induced apoptosis. Conclusion: Compounds 3b and 3d can be considered as promising anticancer active agents with 70% of colchicine activity on tubulin polymerization inhibition and represent hopeful leads that deserve further investigation and optimization.


2019 ◽  
Vol 19 (10) ◽  
pp. 1285-1292 ◽  
Author(s):  
Kuldip D. Upadhyay ◽  
Anamik K. Shah

Background: Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. Objective: The present study is aimed to evaluate a new series of pyrano[3,2-c]quinoline scaffolds derived from the fusion of bioactive quinolone pharmacophore with structurally diverse aryl substituted chromene for its cytotoxicity. Methods: A library of pyrano[3,2-c]quinoline analogues was prepared from one-pot multi component synthesis using various aromatic aldehydes, malononitrile and 2,4-dihydroxy-1-methylquinoline. The new synthetics were primarily screened for its cytotoxicity (IC50) against different human cancer cell lines in vitro. The promising synthetics were further evaluated in vitro for their potency against different kinase activity. The promising compounds were finally tested for their in vivo efficacy in SCID type mice HCT-116 tumor model. Results: The screening results revealed that compounds 4c, 4f, 4i and 4j showed promising activity in in vitro study. However, compound 4c was found to be the most potent candidate with 23% tumor growth inhibition in HCT-116 tumor mice model. Conclusion: The structure activity relationship suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2 c]quinolone moiety seems to have an important position for cytotoxicity activity. However, 3- chloro substitution at C4 aryl ring showed a significant alteration of the bioactive conformer of the parent scaffold and outcome with compound 4c as the most potent candidate of the series.


2014 ◽  
Vol 14 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Gabriela Luna-Palencia ◽  
Federico Martinez-Ramos ◽  
Ismael Vasquez-Moctezuma ◽  
Manuel Fragoso-Vazquez ◽  
Jessica Mendieta-Wejebe ◽  
...  

1982 ◽  
Vol 47 (11) ◽  
pp. 2946-2960 ◽  
Author(s):  
Antonín Trka ◽  
Alexander Kasal

Partial EI-mass spectra of 3β-hydroxy- and 3β-acetoxy-5α-cholestanes substituted in positions 5α-, 6β- or 5α,6β- with a hydroxyl group or halogen atoms (fluorine, chlorine, bromine) are presented. The molecular ions of 5α,6β-disubstituted derivatives of 3β-hydroxy-5α-cholestane (or of its 3-acetate) are considerably more stable than the corresponding monosubstituted derivatives if at least one of the pair of the vicinal substituents is chlorine or fluorine. This increase in stability, most striking in 5α- and 6β-fluoro compounds, is explained by the inductive effect.


2021 ◽  
Vol 14 (2) ◽  
pp. 139
Author(s):  
Mohammad Azam Ansari ◽  
Sarah Mousa Maadi Asiri ◽  
Mohammad A. Alzohairy ◽  
Mohammad N. Alomary ◽  
Ahmad Almatroudi ◽  
...  

The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2–18.5 ± 1.0 mm, 10.5 ± 2.5–22.5 ± 1.5 mm and 13.7 ± 1.0–16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4 ± 3.1%—10.12 ± 2.3% (S. aureus), 72.7 ± 2.2%–23.3 ± 5.2% (P. aeruginosa) and 85.4 ± 3.3%–25.6 ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.


Sign in / Sign up

Export Citation Format

Share Document