scholarly journals Reliable Condensation Curing Silicone Elastomers with Tailorable Properties

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 82
Author(s):  
Alena Jurásková ◽  
Stefan Møller Olsen ◽  
Kim Dam-Johansen ◽  
Michael A. Brook ◽  
Anne Ladegaard Skov

The long-term stability of condensation curing silicone elastomers can be affected by many factors such as curing environment, cross-linker type and concentration, and catalyst concentration. Mechanically unstable silicone elastomers may lead to undesirable application failure or reduced lifetime. This study investigates the stability of different condensation curing silicone elastomer compositions. Elastomers are prepared via the reaction of telechelic silanol-terminated polydimethylsiloxane (HO-PDMS-OH) with trimethoxysilane-terminated polysiloxane ((MeO)3Si-PDMS-Si(OMe)3) and ethoxy-terminated octakis(dimethylsiloxy)-T8-silsesquioxane ((QMOEt)8), respectively. Two post-curing reactions are found to significantly affect both the stability of mechanical properties over time and final properties of the resulting elastomers: Namely, the condensation of dangling and/or unreacted polymer chains, and the reaction between cross-linker molecules. Findings from the stability study are then used to prepare reliable silicone elastomer coatings. Coating properties are tailored by varying the cross-linker molecular weight, type, and concentration. Finally, it is shown that, by proper choice of all three parameters, a coating with excellent scratch resistance and electrical breakdown strength can be produced even without an addition of fillers.

RSC Advances ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 468-477 ◽  
Author(s):  
A. H. A. Razak ◽  
A. L. Skov

When optimising dielectric elastomers (DEs) a conflict exists, namely that for large achievable actuation strains softness is required, but with increased softness electrical breakdown strength decreases.


RSC Advances ◽  
2017 ◽  
Vol 7 (29) ◽  
pp. 17848-17856 ◽  
Author(s):  
Aliff Hisyam A Razak ◽  
Liyun Yu ◽  
Anne Ladegaard Skov

Increased electro-mechanical properties of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3567
Author(s):  
Faiza Faiza ◽  
Abraiz Khattak ◽  
Safi Ullah Butt ◽  
Kashif Imran ◽  
Abasin Ulasyar ◽  
...  

Silicone rubber is a promising insulating material that has been performing well for different insulating and dielectric applications. However, in outdoor applications, environmental stresses cause structural and surface degradations that diminish its insulating properties. This effect of degradation can be reduced with the addition of a suitable filler to the polymer chains. For the investigation of structural changes and hydrophobicity four different systems were fabricated, including neat silicone rubber, a micro composite (with 15% micro-silica filler), and nanocomposites (with 2.5% and 5% nanosilica filler) by subjecting them to various hydrothermal conditions. In general, remarkable results were obtained by the addition of fillers. However, nanocomposites showed the best resistance against the applied stresses. In comparison to neat silicone rubber, the stability of the structure and hydrophobic behavior was better for micro-silica, which was further enhanced in the case of nanocomposites. The inclusion of 5% nanosilica showed the best results before and after applying aging conditions.


2017 ◽  
Vol 199 ◽  
pp. 335-347 ◽  
Author(s):  
V. Sénéchal ◽  
H. Saadaoui ◽  
J. Rodriguez-Hernandez ◽  
C. Drummond

The anchoring of polymer chains at solid surfaces is an efficient way to modify interfacial properties like the stability and rheology of colloidal dispersions, lubrication and biocompatibility. Polyelectrolytes are good candidates for the building of smart materials, as the polyion chain conformation can often be tuned by manipulation of different physico-chemical variables. However, achieving efficient and reversible control of this process represents an important technological challenge. In this regard, the application of an external electrical stimulus on polyelectrolytes seems to be a convenient control strategy, for several reasons. First, it is relatively easy to apply an electric field to the material with adequate spatiotemporal control. In addition, in contrast to chemically induced changes, the molecular response to a changing electric field occurs relatively quickly. If the system is properly designed, this response can then be used to control the magnitude of surface properties. In this work we discuss the effect of an external electric field on the adhesion and lubrication properties of several polyelectrolyte-coated surfaces. The influence of the applied field is investigated at different pH and salt conditions, as the polyelectrolyte conformation is sensitive to these variables. We show that it is possible to fine tune friction and adhesion using relatively low applied fields.


2021 ◽  
Vol 130 (14) ◽  
pp. 144101
Author(s):  
Jeffrey X. Zheng ◽  
Dixiong Wang ◽  
Pariasadat Musavigharavi ◽  
Merrilyn Mercy Adzo Fiagbenu ◽  
Deep Jariwala ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 2
Author(s):  
Cristina Martín-Sabroso ◽  
Mario Alonso-González ◽  
Ana Fernández-Carballido ◽  
Juan Aparicio-Blanco ◽  
Damián Córdoba-Díaz ◽  
...  

Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.


Author(s):  
LUSI NURDIANTI ◽  
IYAN SOPYAN ◽  
TAOFIK RUSDIANA

Objective: The present study was conducted to formulate and characterize the thin film containing astaxanthin nanoemulsion (TF-ASN) using Hydroxypropylmethyl Cellulose (HPMC) polymer as a film matrix system. The stability studies in different storage conditions were also performed. Methods: Astaxanthin nanoemulsion (As-NE) was prepared by using self-nanoemulsifying method, followed by incorporation into the HPMC matrix system by solvent casting method to forming TF-ASN. Evaluation of TF-ASN was performed by physical and mechanical characterizations. Stability study was carried out in both of accelerated (temperature of 40±2 °C/75±5% RH) and non-accelerated (at ambient temperature) conditions. Assay of astaxanthin in individual TF-ASN was determined compared to pure astaxanthin. Results: TF-ASN had good physical and mechanical characteristics that suitable for intraoral administration. Conclusion: For the study of stability under different storage conditions, it was proven that nanoemulsion form was packed in a HPMC matrix could enhance the stability of the astaxanthin.


2000 ◽  
Vol 27 (1) ◽  
pp. 35-44
Author(s):  
Rafał Kołodziej ◽  
Tomasz Nowicki

Sign in / Sign up

Export Citation Format

Share Document