scholarly journals Oligonucleotide-Based Approaches to Inhibit Dengue Virus Replication

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 956
Author(s):  
Kingshuk Panda ◽  
Kalichamy Alagarasu ◽  
Deepti Parashar

Dengue fever is one of the most common viral infections affecting humans. It is an expanding public health problem, particularly in tropical and subtropical regions. No effective vaccine or antiviral therapies against Dengue virus (DENV) infection are available. Therefore, there is a strong need to develop safe and effective therapeutic strategies that can reduce the burden and duration of hospitalizations due to this life-threatening disease. Oligonucleotide-based strategies are considered as an attractive means of inhibiting viral replication since oligonucleotides can be designed to interact with any viral RNA, provided its sequence is known. The resultant targeted destruction of viral RNA interferes with viral replication without inducing any adverse effects on cellular processes. In this review, we elaborate the ribozymes, RNA interference, CRISPR, aptamer and morpholino strategies for the inhibition of DENV replication and discuss the challenges involved in utilizing such approaches.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 542
Author(s):  
Eduardo I. Tognarelli ◽  
Antonia Reyes ◽  
Nicolás Corrales ◽  
Leandro J. Carreño ◽  
Susan M. Bueno ◽  
...  

Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.


2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Tristan X. Jordan ◽  
Glenn Randall

ABSTRACT Robust dengue virus (DENV) replication requires lipophagy, a selective autophagy that targets lipid droplets. The autophagic mobilization of lipids leads to increased β-oxidation in DENV-infected cells. The mechanism by which DENV induces lipophagy is unknown. Here, we show that infection with DENV activates the metabolic regulator 5′ adenosine-monophosphate activated kinase (AMPK), and that the silencing or pharmacological inhibition of AMPK activity decreases DENV replication and the induction of lipophagy. The activity of the mechanistic target of rapamycin complex 1 (mTORC1) decreases in DENV-infected cells and is inversely correlated with lipophagy induction. Constitutive activation of mTORC1 by depletion of tuberous sclerosis complex 2 (TSC2) inhibits lipophagy induction in DENV-infected cells and decreases viral replication. While AMPK normally stimulates TSC2-dependent inactivation of mTORC1 signaling, mTORC1 inactivation is independent of AMPK activation during DENV infection. Thus, DENV stimulates and requires AMPK signaling as well as AMPK-independent suppression of mTORC1 activity for proviral lipophagy. IMPORTANCE Dengue virus alters host cell lipid metabolism to promote its infection. One mechanism for altered metabolism is the induction of a selective autophagy that targets lipid droplets, termed lipophagy. Lipophagy mobilizes lipid stores, resulting in enhanced β-oxidation and viral replication. We show here that DENV infection activates and requires the central metabolic regulator AMPK for its replication and the induction of lipophagy. This is required for the induction of lipophagy, but not basal autophagy, in DENV-infected cells.


2022 ◽  
Vol 103 (1) ◽  
Author(s):  
Michael Leitner ◽  
Kayvan Etebari ◽  
Sassan Asgari

Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus–host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia -transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia -transinfected Ae. aegypti’s initial virus recognition and transcriptional response to DENV infection.


2015 ◽  
Vol 89 (15) ◽  
pp. 8026-8041 ◽  
Author(s):  
Philippe Metz ◽  
Abhilash Chiramel ◽  
Laurent Chatel-Chaix ◽  
Gualtiero Alvisi ◽  
Peter Bankhead ◽  
...  

ABSTRACTAutophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV.IMPORTANCEAutophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we used high-content, imaging-based flow cytometry to quantify autophagic flux and endolysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endolysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a proviral to an antiviral cellular process, which is counteracted by the virus.


2010 ◽  
Vol 31 (2) ◽  
pp. 64
Author(s):  
Paul Young

Dengue viruses are a major public health problem throughout the tropical world, with up to 100 million people infected annually. Infection can result in acute febrile illness (dengue fever) and in severe cases is associated with abnormalities in vascular permeability and haemostasis (dengue haemorrhagic fever) that can lead to sudden and fatal hypovolemic shock (dengue shock syndrome). The incidence of dengue has steadily increased over the last two to three decades such that it is now endemic throughout much of the tropics and is the leading cause of infant mortality in some South-East Asian countries. Australia has not escaped this territorial expansion of dengue, with regular epidemic outbreaks now occurring in North Queensland. The epidemic that lasted for most of the summer of 2008?2009 involved the circulation of all four dengue virus serotypes and more than 1,000 confirmed cases. Coupled with the potential impact that climate change may have in increasing the range of its mosquito vector, there is growing concern that dengue may become endemic in Australia. Considerable challenges have accompanied the development of vaccine strategies for dengue and this has reinforced the importance of the complementary development of antiviral therapies. Part of our dengue research efforts has been focused on identifying viral targets for inhibitor design.


2018 ◽  
Author(s):  
Mabel L. Taracena ◽  
Vanessa Bottino-Rojas ◽  
Octavio A.C. Talyuli ◽  
Ana Beatriz Walter-Nuno ◽  
José Henrique M. Oliveira ◽  
...  

AbstractAedes aegypti is the vector of some of the most important vector-borne diseases like Dengue, Chikungunya, Zika and Yellow fever, affecting millions of people worldwide. The cellular processes that follow a blood meal in the mosquito midgut are directly associated with pathogen transmission. We studied the homeostatic response of the midgut against oxidative stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation led to an increase in ROS production by the epithelial cells in response to contact with the resident microbiota, suggesting that maintenance of low levels of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation of the regeneration process compared with the refractory strain. Impairment of the Delta/Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the susceptibility of the refractory strains to DENV infection of the midgut. We propose that this cell replenishment is essential to control viral infection in the mosquito. Our study demonstrates that the intestinal epithelium of the blood fed mosquito is able to respond and defend against different challenges, including virus infection. In addition, we provide unprecedented evidence that the activation of a cellular regenerative program in the midgut is important for the determination of the mosquito vectorial competence.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1267
Author(s):  
Aussara Panya ◽  
Nunghathai Sawasdee ◽  
Pucharee Songprakhon ◽  
Yingmanee Tragoolpua ◽  
Siriphorn Rotarayanont ◽  
...  

Dengue virus (DENV) infection has become a critically important globally prevalent infectious disease, especially in tropical and subtropical countries. Since neither currently exists, there is an urgent need for an effective vaccine to prevent, and a specific drug to treat DENV infection. Therapeutic peptides represent an attractive alternative for development into anti-DENV drugs due to their safety and their diverse biological and chemical properties. We recently reported novel bioactive peptides extracted from the Asian medicinal plant Acacia catechu that efficiently inhibited all four DENV serotypes. In this study, we investigated the anti-DENV activity of a synthetic bioactive peptide derived from this plant. The most effective peptide (designated Pep-RTYM) inhibited DENV infection with a half-maximal inhibition concentration value of 7.9 μM. Time-of-addition study demonstrated that Pep-RTYM interacted with DENV particles and inhibited cellular entry. Pep-RTYM at 50 μM significantly reduced DENV production in Vero-kidney epithelial cells about 1000-fold, but it could decrease the virus production in Huh7 hepatocyte cells approximately 40-fold. Binding of Pep-RTYM to DENV particles may prevent virus interaction with cellular receptor and subsequent virus entry. This finding suggests a potential role of Pep-RTYM in the development of a novel anti-DENV drug.


Author(s):  
Shuaibu Abdullahi Hudu ◽  
Saadatu Haruna Shinkafi ◽  
Shuaibu Umar

Development of an effective vaccine is of paramount important in disease prevention and control. As such, recombinant technology can serve as a gateway for the development of safe and effective vaccines that can be delivered effectively with an appropriate adjuvant. Therefore, this paper aimed to review the role of recombinant vaccine technology, new adjuvants and the challenge of vaccine delivery. Related peer-reviewed journal article searches were conducted using a subscribed database at the Universiti Putra Malaysia library, involving areas of Health Sciences and Medicine via Medline, SCOPUS and Google Scholar. New generation vaccines include highly purified synthetic or recombinant antigens that stimulate effective cell-mediated immune and mucosal immunity. In order to enhance their efficacy, a number of adjuvants are used. Efforts have also been made to explore the usage of non-invasive routes of administration, devices and equipment for optimized antigen and immune-potentiator delivery of the immune system. Recombinant vaccine technology is rapid, compared to the traditional method of vaccine development and does not require the handling of live viruses. It is, therefore, a promising technology for developing a future vaccine to curb emerging and re-emerging viral infections that may be life-threatening or teratogenic.


2021 ◽  
Vol 8 (4) ◽  
pp. 01-03
Author(s):  
Rajiv Kumar ◽  
Fatemeh Mohammadipanah

Recently, emerged outbreaks of various viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), MERS-CoV, and ZIKA infections, are fatal for human life. These life-threatening infections to public health pointed out as a major cause responsible for initiating severe diseases globally. These viral infections heightened the morbidity rates and thus, it is a deadly fear to human life. Researchers left no stone unturned for searching newer therapeutic targets and remedies to treat these viral infections and outbreaks. Simultaneously, some of the researchers have gained success in the discovery of an efficient treatment and development of an effective vaccine [1]. In view of that, numerous developments have been made for innovating nanotherapies, which can treat viral infection and few of them are written off as nanomedicine, have been become reality.


Author(s):  
Diana Domínguez-Martínez ◽  
Daniel Nuñez Avellaneda ◽  
Juan Castillo Cruz ◽  
Gloria León-Avila ◽  
BLANCA GARCIA-PEREZ ◽  
...  

The nucleotide-binding domain (NBD) and leucine-rich repeat receptors, such as NOD-like receptors (NLRs), have pivotal functions in the innate immune response to various viral infections participating during the recognition of pathogens and activation of signaling pathways. One NLR, NOD2, is a dynamic protein that is activated in the presence of viral genomes and metabolites. However, its participation in combating a dengue virus (DENV) infection remains unclear. The aim of this study was to determine the role of NOD2 in macrophage-like THP-1 cells during an in vitro infection with DENV type 2 (DENV2). The interactions of NOD2 with RIP2 and MAVS was examined in DENV2-infected and agonist-stimulated cells. The effects of downregulating NOD2 expression or signaling on virus loads was also evaluated. The cellular mRNA expression and protein levels of NOD2 on cells under the stimuli were quantified with RT-PCR, Western blot and indirect immunofluorescence. Both the mRNA and protein expression of NOD2 was enhanced in response to DENV-2 infection. Interactions of NOD2 with RIP2 and MAVS, analyzed with confocal microscopy and co-immunoprecipitation assays, were time-dependent and increased in the post-infection period, between 6 and 24 h. After silencing NOD2 expression, DENV2-infected cells displayed greater viral loads and decreased expression of IL-8 and IFN-α (measured in supernatants obtained from the cells), compared to the uninfected (mock control) cells or those transfected with irrelevant-siRNA. Thus, in response to a DENV2 infection, NOD2 was activated in THP-1 human macrophage-like cells, the production of IL-8 and IFN-α was enhanced, and viral replication was limited.


Sign in / Sign up

Export Citation Format

Share Document