scholarly journals Quantitative GC–MS Analysis of Artificially Aged Paints with Variable Pigment and Linseed Oil Ratios

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2218
Author(s):  
Eliise Tammekivi ◽  
Signe Vahur ◽  
Martin Vilbaste ◽  
Ivo Leito

In this study, quantitative gas chromatography–mass spectrometry (GC–MS) analysis was used to evaluate the influence of pigment concentration on the drying of oil paints. Seven sets of artificially aged self-made paints with different pigments (yellow ochre, red ochre, natural cinnabar, zinc white, Prussian blue, chrome oxide green, hematite + kaolinite) and linseed oil mixtures were analysed. In the pigment + linseed oil mixtures, linseed oil concentration varied in the range of 10 to 95 g/100 g. The results demonstrate that the commonly used palmitic acid to stearic acid ratio (P/S) to distinguish between drying oils varied in a vast range (from especially low 0.6 to a common 1.6) even though the paints contained the same linseed oil. Therefore, the P/S ratio is an unreliable parameter, and other criteria should be included for confirmation. The pigment concentration had a substantial effect on the values used to characterise the degree of drying (azelaic acid to palmitic acid ratio (A/P) and the relative content of dicarboxylic acids (∑D)). The absolute quantification showed that almost all oil paint mock-ups were influenced by pigment concentration. Therefore, pigment concentration needs to be considered as another factor when characterising oil-based paint samples based on the lipid profile.

2013 ◽  
Vol 13 (23) ◽  
pp. 11661-11673 ◽  
Author(s):  
M. Mendez ◽  
R. Ciuraru ◽  
S. Gosselin ◽  
S. Batut ◽  
N. Visez ◽  
...  

Abstract. The heterogeneous reaction of Cl• radicals with submicron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapours and introduced into the reactor, where chlorine atoms were produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by gas chromatography–mass spectrometer (GC/MS) analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analysis has shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2, which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids were identified by GC/MS. The formation of alcohols and monocarboxylic acids is also suspected. A reaction pathway for the main products and more functionalized species is proposed. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface but also in bulk by mechanisms which are still unclear. They help to understand the aging of primary tropospheric aerosol containing fatty acids.


Proceedings ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 101
Author(s):  
Virgil Badescu ◽  
Raluca Senin

The aim of this article was the gas chromatography–mass spectrometry (GC-MS) analysis oforganic matter from a residual liquor sample (S.C. Alum S.A., Tulcea), extracted by the solid-phasemicroextraction method (SPMA) and derivatized with N-(tert-butyldimethylsilyl)-Nmethyltrifluoroacetamide(MTBSTFA) as the silylating agent. [...]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanka Verma ◽  
Atul Bajaj ◽  
R. M. Tripathi ◽  
Sudhir K. Shukla ◽  
Suman Nagpal

Abstract Background Recent advances in the diversified anti-diabetic drugs have appeared in the startling increase in the count of poisoning cases. The epidemics of diabetes mellitus are increasing; hence, the no. of anti-diabetic drug users raised by 42.9%. The use of glimepiride raised to 24%. As the toxicity and drug cases are also escalating with increasing epidemics of diabetes mellitus, a novel gas chromatography-mass spectrometry (GC-MS) method for detecting glimepiride in biological matrices is developed. Results Liquid-liquid extraction method was employed by using 1-butanol: hexane (50:50, v/v) under an alkaline medium, and then back extraction was done via acetic acid. Distinct derivatization techniques were employed for the sample preparation for GC-MS analysis, i.e., silylation and acylation. Derivatization approaches were optimized under different parameters, i.e., reaction temperature and reaction time. N-Methyl-N-(trimethylsilyl) trifluoroacetamide [MSTFA] was found to be the best sound derivatization reagent for the GC-MS analysis of glimepiride. Total ion current (TIC) mode was selected for the monitoring of ions of trimethylsilyl (TMS) derivative of glimepiride with an m/z ratio of 256. Distinct parameters like specificity, carryover, stability, precision, and accuracy were evaluated for validating the identification method. The GC-MS method is found to be linear and illustrated within the range 500 to 2500 ng/ml with the value of R2 (coefficient of determination) at 0.9924. The stability of the extracted and derivatized glimepiride was accessed with regard to processed/extracted sample conditions and autosampler conditions, respectively. Accuracy at each concentration level was within the + 15% of the nominal concentration. Precision (%) for the interday and intraday analysis was found to be in the respectable spectrum. Conclusion Henceforth, the proposed GC-MS method can be employed for the determination of glimepiride in biological matrices.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2722
Author(s):  
Christopher Stanly ◽  
Mariaevelina Alfieri ◽  
Alfredo Ambrosone ◽  
Antonietta Leone ◽  
Immacolata Fiume ◽  
...  

Fruit juice is one of the most easily accessible resources for the isolation of plant-derived vesicles. Here we found that micro- and nano-sized vesicles (MVs and NVs) from four Citrus species, C. sinensis, C. limon, C. paradisi and C. aurantium, specifically inhibit the proliferation of lung, skin and breast cancer cells, with no substantial effect on the growth of non-cancer cells. Cellular and molecular analyses demonstrate that grapefruit-derived vesicles cause cell cycle arrest at G2/M checkpoint associated with a reduced cyclins B1 and B2 expression levels and the upregulation of cell cycle inhibitor p21. Further data suggest the inhibition of Akt and ERK signalling, reduced intercellular cell adhesion molecule-1 and cathepsins expressions, and the presence of cleaved PARP-1, all associated with the observed changes at the cellular level. Gas chromatography-mass spectrometry-based metabolomics reveals distinct metabolite profiles for the juice and vesicle fractions. NVs exhibit a high relative amount of amino acids and organic acids whereas MVs and fruit juice are characterized by a high percentage of sugars and sugar derivatives. Grapefruit-derived NVs are in particular rich in alpha–hydroxy acids and leucine/isoleucine, myo-inositol and doconexent, while quininic acid was detected in MVs. Our findings reveal the metabolite signatures of grapefruit-derived vesicles and substantiate their potential use in new anticancer strategies.


Author(s):  
Yogeshwari C ◽  
Kumudha P

 Objective:The objective of this study is to characterize the phytoconstituents of Tiliacora racemosa Colebr. using gas chromatography mass spectrometry (GC-MS).Methods: Preliminary phytochemical and physicochemical analysis was carried out using standard procedures. GC-MS analysis of methanolic extract was carried out using Thermo GC-Trace Ultra version: 5.0, Thermo MS DSQ with a DB 35MS capillary standard non-polar column and gas chromatograph interfaced to a mass selective detector (MS DSQ II) with Xcalibur software.Results: Preliminary phytochemical screening revealed the presence of alkaloids, flavonoids, phenols, tannins, triterpenoids, steroids, proteins and amino acids, carbohydrates, saponins and coumarin. Quinones, anthraquinones, glycosides and fixed oil were absent. GC-MS analysis revealed the presence of 28 compounds of which quinic acid (retention times [RT]: 15.65) and inositol, 1-deoxy-(CAS) (RT: 19.24) was observed as abundant compounds.Conclusion: The presence of various bioactive compounds confirms the medicinal importance and it’s application for curing various diseases by traditional practitioners. However, isolation and characterization of potential bioactive compounds would lead to drug formulation.


Author(s):  
Lokesh Ravi ◽  
Manasvi V ◽  
Praveena Lakshmi B

ABSTRACTObjective: Aim of this study is to analyze the antibacterial and antioxidant potential of crude saponin extract (CSE) from Abutilon indicum leaves.Methods: CSE was subjected for gas chromatography-mass spectrometry (GC-MS) analysis to identify its components. Antibacterial potentialwas analyzed using agar well diffusion method and minimum inhibitory concentration (MIC) was detected using 96-well plate method, againstStaphylococcus aureus (MTCC: 3160) and Escherichia coli (MTCC: 443). DNA damage study was performed using comet assay. Antioxidant capabilitywas studied using 2,2-diphenyl-1-picrylhydrazyl scavenging assay.Results: GC-MS analysis suggested a library match to benzene-1-4-bis(phenylmethyl), with a molecular weight of 258 g/mol to be the majorcomponent in the CSE at 21.25 RT. CSE demonstrated 96.16% free radical scavenging activity at 2.5 mg/ml concentration. CSE demonstrateda significant antibacterial activity in the well diffusion assay, S. aureus 17 mm and E. coli 15 mm, with a MIC value of 1.11 mg/ml. Comet assaydemonstrated no DNA damage.Conclusion: These results conclude that CSE of A. indicum leaves possesses promising antibacterial and antioxidant potential.Keywords: Abutilon indicum, Saponin, Escherichia coli, Staphylococcus aureus, 2,2-diphenyl-1-picrylhydrazyl, Antibacterial assay.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
A. ALI ◽  
A. JAVAID ◽  
A. SHOAIB

ABSTRACT Sclerotium rolfsii is a soil-borne fungal plant pathogen that causes diseases in more than 500 plant species. Chemical fungicides used to control this disease cause environmental pollution, therefore, plant derived compounds can be used as alternative to synthetic fungicides to reduce environmental pollution. Chenopodium album is a weed of family Chenopodiaceae that is used as food and also has medicinal importance. In the present study, antifungal activity of methanolic root extract of C. album was evaluated against S. rolfsii using six concentrations viz. 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 g 100 mL-1 amended in malt extract as growth medium. All the root extract concentrations significantly reduced fungal biomass by 15-58% over control. Gas chromatography-mass spectrometry (GC-MS) analysis of the methanolic root extract of C. album was performed. Six compounds were identified in methanolic root extract through GC-MS analysis. The most abundant compound was 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester (58.56%) followed by 9-octadecenoic acid (Z)-, methyl ester (12.75%) and 9-octadecenoic acid (Z)-, methyl ester (10.27%), which might be responsible for antifungal activity of methanolic root extract of C. album.


Drug Research ◽  
2017 ◽  
Vol 68 (06) ◽  
pp. 344-348 ◽  
Author(s):  
Abdul Qadir ◽  
Athar Ali ◽  
Muhammad Arif ◽  
Abdulmohsen Al-Rohaimi ◽  
Satya Singh ◽  
...  

AbstractThe seed kernels of Sesamum indicum L. (family: Pedaliaceae) were extracted with ethanol and yield of components determined by Gas Chromatography/Mass Spectrometry (GC/MS). The free radical scavenging activities of ethanolic extract against1, 1-Diphenyl-2-picrylhydrazyl (DPPH) were determined by UV spectrophotometer at 517 nm. Phytochemical screening revealed the presence of numerous bioactive compounds including steroids, phenolic, terpenoids, fatty acids and different types of ester compounds. The ethanolic extract was purified and analyzed by GC MS.The prevailing compounds found in ethanolic extract were Carvacrol (0.04%),Sesamol (0.11%), 4-Allyl-2-methoxy-phenol(0.04%),Palmitic acid (1.08%), cis-9-Hexadecenal (85.40%), Lineoleoyl chloride (0.52%), Palmitic acid β-monoglyceride (0.40%), Dihydro-aplotaxene (0.61%), Oleoyl chloride (1.11%), (+)-Sesamin (4.73%), 1,3-Benzodioxole, 5-[4-(1,3-benzodioxol-5-yloxy)tetrahydro-1 H,3 H-furo [3,4-c]furan-1-yl], [1 S-(1,3,4,6α.), (2.01%)], 6-Nitrocholest-5-en-3-yl acetate (0.22%), Ergost-5-en-3β-ol (2.35%) and 24-Propylidenecholesterol (0.16%). The presence ofsaturated and unsaturated fatty acids in ethanolicextract justifies the use of this plant to treat many ailments in folk and traditional medicine. Ethanolic extract have shown significant antioxidant activity(IC50120.38±2.8 µg/ml). The presence of phenolic (Sesamol), lignin (Sesamin) compounds and unsaturated fatty acids are reported as possible contributor for antioxidantactivity of seed extract.


Sign in / Sign up

Export Citation Format

Share Document