scholarly journals Study of Mono- and Bimetallic Fe and Mn Oxide-Supported Clinoptilolite for Improved Pb(II) Removal

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4143
Author(s):  
Eva Chmielewská ◽  
Wlodzimierz Tylus ◽  
Marek Bujdoš

A cost-effective, iron- and manganese-oxide-supported clinoptilolite-based rock was prepared. Based on its nanoporous structure, it worked as a nanoreactor, thereby providing enhanced functionalities. The mono- and bimetallic Fe- and Mn-oxide-supported clinoptilolite was thoroughly characterized with thermoanalytical FT-IR, XRD, SEM, and XPS spectroscopy. All the spectral procedures that were used confirmed the occurrence of a new MnO2 phase (predominantly birnessite), including mostly amorphous iron oxi(hydr)oxide (FeO(OH)) species on the surface of the above-synthesized adsorbents. The synthesized products validated a considerably higher adsorption capacity toward Pb(II) pollutants compared to the natural clinoptilolite. The following order of a(max) toward Pb(II) was found: MnOx-zeolite (202.1 mg/g) > FeO(OH)-MnOx-zeolite (101.3 mg/g) > FeO(OH)-zeolite (80 mg/g) > natural zeolite (54.9 mg/g). The adsorption equilibrium data were analyzed by the two-parameter empirical isotherm models Langmuir, Freundlich, and BET as well as the three-parameter Redlich–Peterson isotherm.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Bayram Kizilkaya ◽  
A. Adem Tekınay

Removal of lead (II) from aqueous solutions was studied by using pretreated fish bones as natural, cost-effective, waste sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacities of the adsorbent was investigated. The maximum adsorption capacity for Pb (II) was found to be 323 mg/g at optimum conditions. The experiments showed that when pH increased, an increase in the adsorbed amount of metal of the fish bones was observed. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of Pb (II) adsorption and the value ofRLfor Pb (II) was found to be 0.906. The thermodynamic parameters related to the adsorption process such asEa,ΔG°,ΔH°, andΔS° were calculated andEa,ΔH°, andΔS° were found to be 7.06, 46.01 kJ mol−1, and 0.141 kJ mol−1K−1for Pb (III), respectively.ΔH° values (46.01 kJmol−1) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to the experimental equilibrium data. The fish bones were effectively used as sorbent for the removal of Pb (II) ions from aqueous solutions.


2015 ◽  
Vol 1130 ◽  
pp. 519-523
Author(s):  
Zeng Ling Wu ◽  
Wei Zhang Kong ◽  
Jin Yan Liu ◽  
Zhi Wu ◽  
Shui Ping Zhong ◽  
...  

The adsorption of bacteria onto minerals is the premise for bioleaching and plays an important role in minerals oxidation. Understanding of the adsorption kinetics onto the surface will give information on the effectiveness of bioleaching. Three kinds of mixed bacteria (Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, Sulfobacillus) were cultured in different substrates - copper concentrate, elemental sulfur and ferrous iron and adsorbed onto different solid surface of elemental sulfur, silica and copper concentrate. Adsorption kinetics was examined and surface properties were investigated by Zeta-potential and FT-IR spectroscopy. Bacterial adsorption equilibrium data for bacteria grown on three different substrates were well fitted to Freundlich isotherms, indicating inhomogeneous and selective adsorption. Microorganisms grown on copper concentrate and S0 showed similar adsorption kinetics whereby cell adsorptions proceeded rapidly and reached equilibrium within 30 mins of interaction. With the average KF value of 46.2, most copper concentrate-grown cells were strongly adsorbed to three solid surfaces. Microorganisms grown on copper concentrate and S0 also showed higher hydrophobicity and higher isoelectric point (IEP) (pH 3.4-3.8) as compared to the soluble Fe2+-grown cells (pH 2.1), indicating higher amount of EPS and proteins on the surfaces. The FT-IR spectra indicated the presence of COOH, NH2, OH and PO4 groups on all cell surfaces. However, more proteinaceous compounds were found on cells grown on copper concentrate and S0 substrates.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Pezhman Zein Al-Salehin ◽  
Farid Moeinpour ◽  
Fatemeh S. Mohseni-Shahri

Abstract In the present paper, used cigarette filter ash was prepared and used as an active adsorbent to remove As(III) ions from aqueous solutions. The prepared adsorbent structure was identified by scanning electron microscopy analysis, Brunauer–Emmett–Teller method and energy-dispersive X-ray spectroscopy analysis. The influence of contact time, pH, adsorbent dose and initial concentration of As(III) on the removal of As(III) was assessed. Several isotherm models were checked to illustrate the adsorption equilibrium. The adsorption equilibrium data adapted well with the Langmuir isotherm model. The maximum adsorption capacity of 33.33 mg/g was acquired from the Langmuir isotherm. The calculated thermodynamic variables verified that the adsorption process is spontaneous and endothermic.


2021 ◽  
Vol 51 (3) ◽  
pp. 185-192
Author(s):  
M. Seenuvasan ◽  
Carlin Geor Malar ◽  
S.B. Ron Carter ◽  
S. Praveen

The nano-sorbent was synthesized by the embedment of magnetite onto the biochar obtained from Cassia auriculata for the effective adsorption of Levafix blue (LB) dye. Different instrumental techniques revealed the properties of biochar and the nano-sorbent. It was very distinct that the nano-sorbent gained highly favorable properties to be an effectual bio-sorbent. The effect of contact time, initial dye concentration and nano-sorbent dosage on the removal of LB dye was examined. Also, out of the kinetics studies models, the best fit and highest R2 values (0.9873) showed that the adsorption followed pseudo-second-order kinetics. Langmuir, Freundlich and Temkin isotherm models were established for the adsorption equilibrium data and the Temkin model showed the best reliability with the experimental results with highest R2 value of 0.9915. The adsorption system was modelled using the Artificial Neural Network (ANN) for biochar and nano-sorbent. The developed well-trained neural structure suggested the high performance of nano-sorbent.    


2020 ◽  
Vol 10 (7) ◽  
pp. 2251 ◽  
Author(s):  
Phyo Phyo Kyi ◽  
Jude Ofei Quansah ◽  
Chang-Gu Lee ◽  
Joon-Kwan Moon ◽  
Seong-Jik Park

In this study, we explored the adsorption potential of biochar derived from palm kernel shell (BC-PKS) as an affordable adsorbent for the removal of crystal violet from wastewater. Kinetics, equilibrium, and thermodynamics studies were carried out to evaluate the adsorption of crystal violet onto BC-PKS. The kinetics adsorption process followed the pseudo-second-order model, indicating that the rate of adsorption is principally controlled by chemisorption. The adsorption equilibrium data were better fitted by the Langmuir isotherm model with a determination coefficient of 0.954 and a maximum adsorption of 24.45 mg/g. Thermodynamics studies found the adsorption of crystal violet by BC-PKS to be endothermic with increasing randomness at the BC-PKS/crystal violet interface. The percentage removal and adsorption capacity increased with the pH of the solution, as the negative charges on the biochar surface at high pH enhance the electrostatic attraction between crystal violet molecules and BC-PKS. Increasing the BC-PKS dosage from 0.1 to 1.0 g increased percent removal and decreased the adsorption capacity of crystal violet onto BC-PKS. Therefore, biochar from agricultural by-products, i.e., palm kernel shell, can be cost-effective adsorbents for the removal of crystal violet from textile wastewater.


2016 ◽  
Vol 720 ◽  
pp. 31-36 ◽  
Author(s):  
Ryouichi Hikosaka ◽  
Fukue Nagata ◽  
Masahiro Tomita ◽  
Katsuya Kato

Deoxyribonucleic acid (DNA) adsorption onto particles has applications in biosensors, separation methods, and gene delivery. Mesoporous silica (MPS), which exhibits a high surface area and large pore volume, is used in these applications because its pore size is easily controlled and its surface functional groups are easily exchanged. In this study, three types of MPSs with different pore sizes (2.4, 5.6, and 11.8 nm) were functionalized with different aminosilane coupling reagents and the effects of the MPS pore size and surface functional groups on DNA adsorption were evaluated. As the pore size of MPS increased, MPSs with diethylenetriamine (–3NH2) adsorbed higher amounts of DNA, whereas MPSs with hexylenediamine groups (–2HNH2) adsorbed lower amounts of DNA. Moreover, the fitting of DNA adsorption equilibrium data to Langmuir and Freundlich isotherm models was investigated.


2021 ◽  
Vol 47 (1) ◽  
pp. 95-103
Author(s):  
Ivone Vanessa Jurado Dávila ◽  
Júlia Viola Matzenbacher Hübner ◽  
Keila Guerra Pacheco Nunes ◽  
Liliana Amaral Féris

In this work, it was studied the caffeine removal through the adsorption on granular activated carbon (CAG). The influence of pH, contact time and CAG dosage were analyzed by batch experiments. Adsorption Kinetic was studied using the models of pseudo-first-order and pseudo-second-order. The adsorption equilibrium data was studied with Langmuir, Freundlich, and Redlich-Peterson isotherm models. The process thermodynamic also was studied. It was obtained 88 % of removal under the experimental conditions of natural pH, 60 min of adsorption and 8 g.L-1 of CAG. The kinetic model that showed the best results was the pseudo-secondorder and Langmuir was the isotherm model that best described the adsorption behavior. The thermodynamic parameters obtained showed a spontaneous, endothermic and reversible process. The desorption efficiency also was studied by regenerant solvents. The best results were obtained using a solvent combination of ethyl acetate, ethanol, and water (50:25:25), and it was obtained a caffeine removal of 57 %, achieving 70 % when a new solution is used in each regeneration step.


Author(s):  
Xiao Yu ◽  
Zhijing Han ◽  
Shuqi Fang ◽  
Chun Chang ◽  
Xiuli Han

AbstractThe optimal preparation conditions of activated carbon (AC) derived from corncob (CC) by steam activation were investigated using response surface methodology. In response to iodine adsorption capacity, experimental design was established using three synthetic variables based on the Box–Behnken central composite design. The optimum conditions of 892 °C activation temperature, 40 min residence time, and 1:1.6 the mass ratio of char to H2O gave 1216.74 mg/g iodine adsorption value. AC was characterized using instrumental analyses consist of Brunauere-Emmette-Teller (BET), Fourier transform infrared (FT-IR) and Scanning electron microscopy (SEM). The effect of experimental parameters such as adsorption time, adsorbent dosage and pH on the uptake of methylene blue (MB) were studied. Experimental equilibrium data was analyzed by the Langmuir, Freundlich, Sips and Koble–Corrigan isotherm models. The results showed that the Freundlich and Koble–Corrigan models could properly represent the adsorption behavior of MB on AC. In addition, it was known that the adsorption of MB was a spontaneous and endothermic process from the thermodynamic parameters of ΔG, ΔHand ΔS.


2011 ◽  
Vol 356-360 ◽  
pp. 1581-1585 ◽  
Author(s):  
Yan Li Sun ◽  
Jian Wei Lin ◽  
Hong Huang ◽  
Wei Ying Zhang ◽  
Dan Dan Ma

Abstract. In this study, the simultaneous adsorption characteristics of ammonium and phosphate from aqueous solution by calcium chloride-modified zeolite were investigated. Results showed that the adsorption kinetic data of ammonium and phosphate onto the calcium chloride-modified zeolite could be well described by a pseudo-second-order model. The adsorption equilibrium data of ammonium onto the calcium chloride-modified zeolite fitted to the Langmuir isotherm model better than the Freundlich and Dubinin-Radushkevich isotherm models. The phosphate removal efficiency of calcium chloride-modified zeolite increased with the initial concentration of ammonium in aqueous solution. The ammonium removal efficiency of calcium chloride-modified zeolite increased with increasing solution pH from 7.0 to 9.0, but decreased with increasing solution pH from 9.0 to 10.0. The phosphate removal efficiency of calcium chloride-modified zeolite increased dramatically with increasing solution pH from 7.0 to 9.0, but decreased with increasing solution pH from 9.0 to 10.0. The mechanism for the adsorption of ammonium onto the calcium chloride-modified zeolite was ions exchange, and the mechanism for the removal of phosphate by the calcium chloride-modified zeolite was chemical precipitation.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ingrid Johanna Puentes-Cárdenas ◽  
Griselda Ma. Chávez-Camarillo ◽  
César Mateo Flores-Ortiz ◽  
María del Carmen Cristiani-Urbina ◽  
Alma Rosa Netzahuatl-Muñoz ◽  
...  

The adsorption performance of a Cu-TiO2composite for removing acid blue 80 (AB80) dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adsorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetics model. The experimental equilibrium data for AB80 adsorption were evaluated for compliance with different two-parameter, three-parameter, and four-parameter isotherm models. The Langmuir isotherm model best described the AB80 adsorption equilibrium data. The thermodynamic data revealed that the AB80 adsorption process was endothermic and nonspontaneous. Kinetics, equilibrium, and thermodynamic results indicate that Cu-TiO2adsorbs AB80 by a chemical sorption reaction.


Sign in / Sign up

Export Citation Format

Share Document