scholarly journals Effect of the Micronization of Pulp Fibers on the Properties of Green Composites

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5594
Author(s):  
Bruno F. A. Valente ◽  
Armando J. D. Silvestre ◽  
Carlos Pascoal Neto ◽  
Carla Vilela ◽  
Carmen S. R. Freire

Green composites, composed of bio-based matrices and natural fibers, are a sustainable alternative for composites based on conventional thermoplastics and glass fibers. In this work, micronized bleached Eucalyptus kraft pulp (BEKP) fibers were used as reinforcement in biopolymeric matrices, namely poly(lactic acid) (PLA) and poly(hydroxybutyrate) (PHB). The influence of the load and aspect ratio of the mechanically treated microfibers on the morphology, water uptake, melt flowability, and mechanical and thermal properties of the green composites were investigated. Increasing fiber loads raised the tensile and flexural moduli as well as the tensile strength of the composites, while decreasing their elongation at the break and melt flow rate. The reduced aspect ratio of the micronized fibers (in the range from 11.0 to 28.9) improved their embedment in the matrices, particularly for PHB, leading to superior mechanical performance and lower water uptake when compared with the composites with non-micronized pulp fibers. The overall results show that micronization is a simple and sustainable alternative for conventional chemical treatments in the manufacturing of entirely bio-based composites.

2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


2017 ◽  
Vol 751 ◽  
pp. 337-343 ◽  
Author(s):  
Chanchai Thongpina ◽  
Chaiwat Tippuwanan ◽  
Kwanchai Buaksuntear ◽  
Teerani Chuawittayawuta

The thermal and mechanical properties of poly (lactic acid) blended with high molecular weight PEG, i.e. PEG1000 and PEG6000 were compared. The contents of PEG added were 10, 12.5 and 15 % by weight, with respect to PLA. The PLA/PEG blends were modified by addition of organic peroxide in order to induced crosslinking. Addition of organic modified montmorrillonite (Cloisite 30B, C30B) was also performed in order to modify mechanical performance of PLA/PEG blends. C30B was prepared via master batch in PLA. Morphology, crystallization, thermal stability and mechanical properties of the blends were investigated using SEM, DSC, TGA and universal testing macine, respectively. Morphology of cryogenic fracture surface showed smooth brittle surface. PEG1000 well plasticized PLA where as PEG6000 shows better thermal stability and mechanical properties. The presence of PEG induced PLA to perform cold crystallization. Tm in PLA was slightly changed whereas degree of crystallinity of PLA was improved by PEG but slightly decreased by peroxide. The thermal stability of PLA was enhanced with the addtion of PEG6000. The toughening of PLA was confirmed by the increment of elongation at break. The exfoliation of C30B was interfered by the crosslink PLA. Then tensile strength of PLA/PEG/C30B/Luperox101 was then suppressed. The optimum properties, in term of toughening and thermal stability, were found at PEG content of 10 % rather than 15% by weight, for both PEG1000 and PEG6000.


2006 ◽  
Vol 326-328 ◽  
pp. 457-460 ◽  
Author(s):  
Hoi Yan Cheung ◽  
Alan Kin Tak Lau

With the strong emphasis on environmental awareness, it has brought much attention in the development of recyclable and environmentally sustainable composite materials since the last decade. Environmental legislation as well as consumer demand in many countries is increasing the pressure on manufacturers of materials and end-products to consider the environmental impact of their products at all stages of their life cycle, including recycling and ultimate disposal. Silk fibers, spun out from silkworm cocoons, consist of a fibroin core surrounded by a protein layer called "sericin", and these fibers are biodegradable and highly crystalline. It has been known that these fibers have higher tensile strength and are more predictable in failure than glass and synthetic organic fibers. Recently, few preliminary studies have reported that the use of these silks, as microreinforcements to replace un-recyclable carbon and glass fibers for polymeric-based structural composite materials can enhance their mechanical and thermal properties, with reducing the amount of un-decomposable wastes and pollutants. In this paper, the mechanical properties of silk-based epoxy composites formed by different controlled manufacturing parameters are elaborately studied.


2021 ◽  
Vol 15 (4) ◽  
pp. 621-626
Author(s):  
Metehan Oğulcan Lap ◽  
◽  
Yasin Kanbur ◽  
Ümit Tayfun ◽  
◽  
...  

Mussel shell is one of the most hazardous aquaculture wastes and its powder was used as an additive for bio-degradable poly (lactic acid) in this current study. Bio-composites were fabricated via conventional melt mixing technique followed by an injection moulding process. The effects of mussel shell powder inclusion on mechanical, melt-flow, water uptake and morphological performance of poly (lactic acid)-based green composites were reported.


2017 ◽  
Vol 26 (2) ◽  
pp. 701-715 ◽  
Author(s):  
J. F. Balart ◽  
N. Montanes ◽  
V. Fombuena ◽  
T. Boronat ◽  
L. Sánchez-Nacher

2020 ◽  
Vol 4 (3) ◽  
pp. 119 ◽  
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

Natural fibers, such as kenaf, hemp, and flax, also known as bast fibers, offer several benefits such as low density, carbon dioxide neutrality, and less dependence on petroleum sources. Their function as reinforcement in polymer composites offers a great potential to replace a segment of the glass fiber-reinforced polymer composites, especially in automotive components. Despite their promising benefits, they cannot meet the structural and durability demands of automobile parts because of their poor mechanical properties compared to glass fibers. The focus of this research work was the improvement of the mechanical property profile of the bast fiber reinforced polypropylene composites by hybridization with natural high-performance basalt fibers and the influence of basalt fibers coating and polymer modification at the mechanical and thermal properties of the composites. The specific tensile strength of the composite with polymer tailored coating was 39% and the flexural strength was 44% higher than the composite with epoxy-based basalt fibers. The mechanical performance was even better when the bast/basalt hybridization was done in maleic anhydride modified polymer. This led to the conclusion that basalt fibers sizing and polymer modification are the deciding factors in defining the optimal mechanical performance of the composites by influencing the fiber-matrix interaction. The composites were analyzed for their mechanical, thermal, and morphological properties. The comparison of bast/basalt hybrid composite with bast/glass fibers hybrid composite showed a 32% higher specific flexural and tensile strength of the basalt hybrid composite, supporting the concept of basalt fibers as a natural alternative of the glass fibers.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3092
Author(s):  
Juliana V. C. Azevedo ◽  
Esther Ramakers-van Dorp ◽  
Berenika Hausnerova ◽  
Bernhard Möginger

This study investigates the effects of four multifunctional chain-extending cross-linkers (CECL) on the processability, mechanical performance, and structure of polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends produced using film blowing technology. The newly developed reference compound (M·VERA® B5029) and the CECL modified blends are characterized with respect to the initial properties and the corresponding properties after aging at 50 °C for 1 and 2 months. The tensile strength, seal strength, and melt volume rate (MVR) are markedly changed after thermal aging, whereas the storage modulus, elongation at the break, and tear resistance remain constant. The degradation of the polymer chains and crosslinking with increased and decreased MVR, respectively, is examined thoroughly with differential scanning calorimetry (DSC), with the results indicating that the CECL-modified blends do not generally endure thermo-oxidation over time. Further, DSC measurements of 25 µm and 100 µm films reveal that film blowing pronouncedly changes the structures of the compounds. These findings are also confirmed by dynamic mechanical analysis, with the conclusion that tris(2,4-di-tert-butylphenyl)phosphite barely affects the glass transition temperature, while with the other changes in CECL are seen. Cross-linking is found for aromatic polycarbodiimide and poly(4,4-dicyclohexylmethanecarbodiimide) CECL after melting of granules and films, although overall the most synergetic effect of the CECL is shown by 1,3-phenylenebisoxazoline.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2429
Author(s):  
Krittameth Kiatiporntipthak ◽  
Nanthicha Thajai ◽  
Thidarat Kanthiya ◽  
Pornchai Rachtanapun ◽  
Noppol Leksawasdi ◽  
...  

Polylactic acid (PLA) was melt-blended with epoxy resin to study the effects of the reaction on the mechanical and thermal properties of the PLA. The addition of 0.5% (wt/wt) epoxy to PLA increased the maximum tensile strength of PLA (57.5 MPa) to 67 MPa, whereas the 20% epoxy improved the elongation at break to 12%, due to crosslinking caused by the epoxy reaction. The morphology of the PLA/epoxy blends showed epoxy nanoparticle dispersion in the PLA matrix that presented a smooth fracture surface with a high epoxy content. The glass transition temperature of PLA decreased with an increasing epoxy content owing to the partial miscibility between PLA and the epoxy resin. The Vicat softening temperature of the PLA was 59 °C and increased to 64.6 °C for 0.5% epoxy. NMR confirmed the reaction between the -COOH groups of PLA and the epoxy groups of the epoxy resin. This reaction, and partial miscibility of the PLA/epoxy blend, improved the interfacial crosslinking, morphology, thermal properties, and mechanical properties of the blends.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 240
Author(s):  
Alejandro Meza ◽  
Pablo Pujadas ◽  
Laura Montserrat Meza ◽  
Francesc Pardo-Bosch ◽  
Rubén D. López-Carreño

Discarded polyethylene terephthalate (PET) bottles have damaged our ecosystem. Problems of marine fauna conservation and land fertility have been related to the disposal of these materials. Recycled fibre is an opportunity to reduce the levels of waste in the world and increase the mechanical performance of the concrete. PET as concrete reinforcement has demonstrated ductility and post-cracking strength. However, its performance could be optimized. This study considers a statistical-experimental analysis to evaluate recycled PET fibre reinforced concrete with various fibre dose and aspect ratio. 120 samples were experimented under workability, compressive, flexural, and splitting tensile tests. The results pointed out that the fibre dose has more influence on the responses than its fibre aspect ratio, with statistical relation on the tensional toughness, equivalent flexural strength ratio, volumetric weight, and the number of fibres. Moreover, the fibre aspect ratio has a statistical impact on the tensional toughness. In general, the data indicates that the optimal recycled PET fibre reinforced concrete generates a superior performance than control samples, with an improvement similar to those reinforced with virgin fibres.


Sign in / Sign up

Export Citation Format

Share Document