scholarly journals Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 15
Author(s):  
Eduardo Fuentes-Lemus ◽  
Per Hägglund ◽  
Camilo López-Alarcón ◽  
Michael J. Davies

Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.

2006 ◽  
Vol 50 (6) ◽  
pp. 1973-1981 ◽  
Author(s):  
Magdalena Stoczko ◽  
Jean-Marie Frère ◽  
Gian Maria Rossolini ◽  
Jean-Denis Docquier

ABSTRACT The diffusion of metallo-β-lactamases (MBLs) among clinically important human pathogens represents a therapeutic issue of increasing importance. However, the origin of these resistance determinants is largely unknown, although an important number of proteins belonging to the MBL superfamily have been identified in microbial genomes. In this work, we analyzed the distribution and function of genes encoding MBL-like proteins in the class Rhizobiales. Among 12 released complete genomes of members of the class Rhizobiales, a total of 57 open reading frames (ORFs) were found to have the MBL conserved motif and identity scores with MBLs ranging from 8 to 40%. On the basis of the best identity scores with known MBLs, four ORFs were cloned into Escherichia coli for heterologous expression. Among their products, one (blr6230) encoded by the Bradyrhizobium japonicum USDA110 genome, named BJP-1, hydrolyzed β-lactams when expressed in E. coli. BJP-1 enzyme is most closely related to the CAU-1 enzyme from Caulobacter vibrioides (40% amino acid sequence identity), a member of subclass B3 MBLs. A kinetic analysis revealed that BJP-1 efficiently hydrolyzed most β-lactam substrates, except aztreonam, ticarcillin, and temocillin, with the highest catalytic efficiency measured with meropenem. Compared to other MBLs, BJP-1 was less sensitive to inactivation by chelating agents.


Physiology ◽  
2009 ◽  
Vol 24 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Michael S. Huh ◽  
Matthew A. M. Todd ◽  
David J. Picketts

The heterogeneous nature of congenital hydrocephalus has hampered our understanding of the molecular basis of this common clinical problem. However, disease gene identification and characterization of multiple transgenic mouse models has highlighted the importance of the subcommissural organ (SCO) and the ventricular ependymal (vel) cells. Here, we review how altered development and function of the SCO and vel cells contributes to hydrocephalus.


2012 ◽  
Vol 550-553 ◽  
pp. 1043-1047
Author(s):  
Jian Guang Cai ◽  
Da Zhong Yin ◽  
Hui Tang

Taurine (Tau) was widely used in adjusting body normal physiological function and enhancing the ability of resisting all kinds of stress in clinical medicine and sports nutrition. This article collected the literatures of recent 20 years about the application of taurine in animal and human being. According to the chemical structure, amino acids in taurine’s molecular structure played a main role in regulating physiological function. Amino was the key and even the only functional group in biochemical reaction. Schiff’s Reaction between amino and carbonyl in reactive carbonyl compounds was that taurine played a variety biological function of molecular basis in cells.


2021 ◽  
Vol 22 (19) ◽  
pp. 10230
Author(s):  
Alba S. Aquino-Domínguez ◽  
María de los A. Romero-Tlalolini ◽  
Honorio Torres-Aguilar ◽  
Sergio R. Aguilar-Ruiz

The conventional function described for platelets is maintaining vascular integrity. Nevertheless, increasing evidence reveals that platelets can additionally play a crucial role in responding against microorganisms. Activated platelets release molecules with antimicrobial activity. This ability was first demonstrated in rabbit serum after coagulation and later in rabbit platelets stimulated with thrombin. Currently, multiple discoveries have allowed the identification and characterization of PMPs (platelet microbicidal proteins) and opened the way to identify kinocidins and CHDPs (cationic host defense peptides) in human platelets. These molecules are endowed with microbicidal activity through different mechanisms that broaden the platelet participation in normal and pathologic conditions. Therefore, this review aims to integrate the currently described platelet molecules with antimicrobial properties by summarizing the pathways towards their identification, characterization, and functional evaluation that have promoted new avenues for studying platelets based on kinocidins and CHDPs secretion.


BMC Biology ◽  
2010 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Mohammad G Sabbir ◽  
Nichola Wigle ◽  
Shauna Loewen ◽  
Yuan Gu ◽  
Cordula Buse ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (9) ◽  
pp. 2930-2940 ◽  
Author(s):  
Keith E. Weaver ◽  
Shirisha G. Reddy ◽  
Cassandra L. Brinkman ◽  
Smita Patel ◽  
Kenneth W. Bayles ◽  
...  

The par locus of the Enterococcus faecalis plasmid pAD1 is an RNA-regulated addiction module encoding the peptide toxin Fst. Homology searches revealed that Fst belongs to a family of at least nine related peptides encoded on the chromosomes and plasmids of six different Gram-positive bacterial species. Comparison of an alignment of these peptides with the results of a saturation mutagenesis analysis indicated regions of the peptides important for biological function. Examination of the genetic context of the fst genes revealed that all of these peptides are encoded within par-like loci with conserved features similar to pAD1 par. All four Ent. faecalis family members were demonstrated to produce the expected toxin-encoding and regulatory RNA products. The locus from the Ent. faecalis plasmid pAMS1 was demonstrated to function as an addiction module and Fst was shown to be toxic to Staphylococcus aureus, suggesting that a plasmid-encoded module in that species is performing the same function. Thus, the pAD1-encoded par locus appears to be the prototype of a family of related loci found in several Gram-positive species.


2020 ◽  
Author(s):  
Kiel G. Ormerod ◽  
Anthony E. Scibelli ◽  
J. Troy Littleton

AbstractThe Drosophila neuromuscular system is widely used to characterize synaptic development and function. However, little is known about how specific synaptic deficits alter neuromuscular transduction and muscle contractility that ultimately dictate behavioural output. Here we develop a system for detailed characterization of excitation-contraction coupling at Drosophila larval NMJs and demonstrate how specific synaptic and neuronal manipulations disrupt muscle contractility. Muscle contraction force increases with motoneuron stimulation frequency and duration, showing considerable plasticity between 5-40 Hz, while saturating above 50 Hz. Temperature is negatively correlated with muscle performance and enhanced at lower temperatures. A screen for modulators of muscle contractility led to the identification and characterization of the molecular and cellular pathway by which a specific FMRFa peptide, TPAEDFMRFa, increases muscle performance. These findings indicate Drosophila NMJs provide a robust system to relate synaptic dysfunction to alterations in excitation-contraction coupling.


2020 ◽  
Author(s):  
Sendi Mejia ◽  
Suhani Shah ◽  
Yara Abdelsalam ◽  
Ali Nimra ◽  
Munzir Bhatt ◽  
...  

Abstract In this paper, we studied the organization and function of TUBBY Transcription Factor gene family in maize. Initially, using comparative approach, we discovered the Arabidopsis thaliana orthologs in Zea mays. We found in total 13 genes, 12 of which are orthologs and a unique paralog that exhibits the highest activity in maize. We studied the role of TUBBY gene family across different developmental stages using existing expression data, and discovered the binding motifs present in the promoter region of the genes.


Sign in / Sign up

Export Citation Format

Share Document