scholarly journals Ultraviolet Photoactivated Room Temperature NO2 Gas Sensor of ZnO Hemitubes and Nanotubes Covered with TiO2 Nanoparticles

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 462 ◽  
Author(s):  
Hee-Jung Choi ◽  
Soon-Hwan Kwon ◽  
Won-Seok Lee ◽  
Kwang-Gyun Im ◽  
Tae-Hyun Kim ◽  
...  

Prolonged exposure to NO2 can cause lung tissue inflammation, bronchiolitis fibrosa obliterans, and silo filler’s disease. In recent years, nanostructured semiconducting metal oxides have been widely used to fabricate gas sensors because of their unique structure and surface-to-volume ratio compared to layered materials. In particular, the different morphologies of ZnO-based nanostructures significantly affect the detection property of NO2 gas sensors. However, because of the large interaction energy of chemisorption (1–10 eV), metal oxide-based gas sensors are typically operated above 100 °C, overcoming the energy limits to attain high sensitivity and fast reaction. High operating temperature negatively affects the reliability and durability of semiconductor-based sensors; at high temperature, the diffusion and sintering effects at the metal oxide grain boundaries are major factors causing undesirable long-term drift problems and preventing stability improvements. Therefore, we demonstrate NO2 gas sensors consisting of ZnO hemitubes (HTs) and nanotubes (NTs) covered with TiO2 nanoparticles (NPs). To operate the gas sensor at room temperature (RT), we measured the gas-sensing properties with ultraviolet illumination onto the active region of the gas sensor for photoactivation instead of conventional thermal activation by heating. The performance of these gas sensors was enhanced by the change of barrier potential at the ZnO/TiO2 interfaces, and their depletion layer was expanded by the NPs formation. The gas sensor based on ZnO HTs showed 1.2 times higher detection property than those consisting of ZnO NTs at the 25 ppm NO2 gas.

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Ahmad I. Ayesh

The development of gas sensors that are based on metal/metal-oxide nanoclusters has attracted intensive research interest in the last years. Nanoclusters are suitable candidates for gas sensor applications because of their large surface-to-volume ratio that can be utilized for selective and rapid detection of various gaseous species with low-power consuming electronics. Herein, nanoclusters are used as building blocks for the construction of gas sensor where the electrical conductivity of the nanoclusters changes dramatically upon exposure to the target gas. In this review, recent progress in the fabrication of size-selected metallic nanoclusters and their utilization for gas sensor applications is presented. Special focus will be given to the enhancement of the sensing performance through the rational functionalization and utilization of different nanocluster materials.


Author(s):  
Zhuo Liu ◽  
He Lv ◽  
Ying Xie ◽  
Jue Wang ◽  
Jiahui Fan ◽  
...  

The very diverse two-dimensional (2D) materials have bloomed in NO2 gas sensing application that provide new opportunities and challenges in function oriented gas sensors. In this work, a 2D/2D/2D structure...


2004 ◽  
Vol 828 ◽  
Author(s):  
Song-Kap Duk ◽  
Duk-Dong Lee

ABSTRACTIn the study, low power micro gas sensors operated at room temperature for the detection of NH3 and NOx gases are proposed. As candidate material of gas sensor for NH3 gas detection at room temperature, polyaniline(PANi) synthesized by chemical polymerization was selected. And Te(Tellurium) thin film was used for NOx gas detection at room temperature. By using these sensing materials, micro gas sensors for room temperature operation were prepared and measured the response characteristics for NH3 and NOx.In case of PANi sensor, the structure was inverted staggered FET type having advantage of useful one for Lab-On-a-Chip. The operating principle of the sensor is based on the change in work function of PANi film caused by adsorption of gas molecules in air on the film surface. The change in work function was measured indirectly from that in gate voltage of the FET device. The responses to various gases (NH3, CH4, Methanol and CH3CN) were obtained in gate voltage step mode in R.H. 30%. And in case of Te sensor, the sensing material was thermally evaporated on glass substrate. The thickness and annealing temperature were 500 Å −2000 Å and 100 °C −300 °C, respectively. The Te-based micro gas sensor exhibited high sensitivity to NOx and good selectivity against CO and hydro-carbon gases. And by adding Ti to Te film, the sensor has a good selectivity to CO gas.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6781
Author(s):  
Ying Wang ◽  
Li Duan ◽  
Zhen Deng ◽  
Jianhui Liao

Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.


2005 ◽  
Vol 900 ◽  
Author(s):  
Tsuyoshi Ueda ◽  
Hideyuki Norimatsu ◽  
M.M.H. Bhuiyan ◽  
Tomoaki Ikegami ◽  
Kenji Ebihara

ABSTRACTCarbon nanotube (CNT) is a promising material which has potential for applications to various nanotechnology devices owing to its unique features like high electrical conductivity, mechanical strength and large specific surface area. Recently, gas sensors using CNTs or carbon nano-fiber, which have extremely high sensitivity at a room temperature with fast response, have been reported. Being exposed to oxidizing gas like NO, NO2 or O3, the conductance of the single-walled carbon nanotubes (SWNTs) changes due to charge transfer between the SWNT surface and gas molecules adsorbed. Therefore CNTs will be applicable to O2 and O3 gas sensors in various fields.CNTs thin film sensor was prepared and its performance was investigated. CNTs thin film was prepared on a SiN substrate using PLD/CVD method. To prepare a sensor device an Al2O3 substrate with Pt interdigital electrodes (sensor substrate) was used. In this method, Fe catalytic thin film was deposited by pulsed laser deposition (PLD) method using KrF excimer laser of wavelength 248 nm, repetition rate 10 Hz, energy fluence 3 J/cm2. During PLD process the substrate temperature and the ambient gas pressure were kept at room temperature of 25 °C and 3.5×10−5 Torr, respectively. The thickness and roughness of the films were modified by changing a number of ablation laser pulses from 300 to 3,000. A small number of laser pulses deposited Fe nano-particles of less than 10 nm in diameter on the substrate. We used 1000 pulses for a catalytic Fe film preparation as small-sized catalyst is necessary to grow SWNTs. CNTs were grown from Fe thin film on Si or sensor substrates by thermal CVD method. Ethylene gas was used as carbon source. The substrate was set in the quartz reaction tube heated to 1000 °C in an electric furnace. CNTs were grown for 20 ∼ 40 minutes. In our previous studies, it was found that SWNTs can grow under this process. The prepared CNTs were characterized using SEM, TEM and Raman spectroscopy. From SEM observation, randomly oriented CNTs were found on both the Si substrate and the sensor substrate. A diameter of CNTs was found 20 ∼ 50 nm which tended to be proportional to the size of catalyst particle.The Sensitivity of CNT gas sensor was evaluated by measuring the electrical characteristic of the sensor. The sensor was exposed to NO gas of different concentration in a chamber. Resistance of the sensor was measured by two-terminal method, while the sensor was heated from room temperature to a high temperature on a block heater. The Sensitivity of CNT gas sensors, response time and reproducibility was measured. Initial resistance of the film was about 450 and it decreases with temperature increase. This shows that a prepared CNTs sensor film has semiconductor characteristics. Measured maximum sensitivity of CNTs gas sensor was 6.9 % at sensor temperature 290 deg. Detail studies and the latest data will be presented at the symposium.


RSC Advances ◽  
2014 ◽  
Vol 4 (35) ◽  
pp. 18003-18006 ◽  
Author(s):  
Donghong Wang ◽  
Wen Gu ◽  
Yuewei Zhang ◽  
Ying Hu ◽  
Ting Zhang ◽  
...  

A p-type gas sensor based on C-rich carbon nitride exhibits good sensitivity and high selectivity toward NO2 at room temperature.


Author(s):  
Zaid Hameed Mahmoud ◽  
Omar Dhaa Abdalstar ◽  
Noor Sabah

In modern world, gas sensors play important role in many fields of technology used for air pollution, breath analysis, public safety and many others. Gas sensor based semiconductor metal oxide is mostly used in these applications because of low cost, ease-to-use, high sensitivity and lower power consumption. This paper gives an overview about the semiconductor metal oxide and reviews why using it as sensing of gases in electrical applications and then it addresses to the work mechanism of a sensor to sensing H2S gas.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 647
Author(s):  
Tobias Baur ◽  
Johannes Amann ◽  
Caroline Schultealbert ◽  
Andreas Schütze

More and more metal oxide semiconductor (MOS) gas sensors with digital interfaces are entering the market for indoor air quality (IAQ) monitoring. These sensors are intended to measure volatile organic compounds (VOCs) in indoor air, an important air quality factor. However, their standard operating mode often does not make full use of their true capabilities. More sophisticated operation modes, extensive calibration and advanced data evaluation can significantly improve VOC measurements and, furthermore, achieve selective measurements of single gases or at least types of VOCs. This study provides an overview of the potential and limits of MOS gas sensors for IAQ monitoring using temperature cycled operation (TCO), calibration with randomized exposure and data-based models trained with advanced machine learning. After lab calibration, a commercial digital gas sensor with four different gas-sensitive layers was tested in the field over several weeks. In addition to monitoring normal ambient air, release tests were performed with compounds that were included in the lab calibration, but also with additional VOCs. The tests were accompanied by different analytical systems (GC-MS with Tenax sampling, mobile GC-PID and GC-RCP). The results show quantitative agreement between analytical systems and the MOS gas sensor system. The study shows that MOS sensors are highly suitable for determining the overall VOC concentrations with high temporal resolution and, with some restrictions, also for selective measurements of individual components.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2123 ◽  
Author(s):  
Wenli Li ◽  
Yong Zhang ◽  
Xia Long ◽  
Juexian Cao ◽  
Xin Xin ◽  
...  

The unique properties of MoS2 nanosheets make them a promising candidate for high-performance room temperature gas detection. Herein, few-layer MoS2 nanosheets (FLMN) prepared via mechanical exfoliation are coated on a substrate with interdigital electrodes for room-temperature NO2 detection. Interestingly, compared with other NO2 gas sensors based on MoS2, FLMN gas sensors exhibit high responsivity for room-temperature NO2 detection, and NO2 is easily desorbed from the sensor surface with an ultrafast recovery behavior, with recovery times around 2 s. The high responsivity is related to the fact that the adsorbed NO2 can affect the electron states within the entire material, which is attributed to the very small thickness of the MoS2 nanosheets. First-principles calculations were carried out based on the density functional theory (DFT) to verify that the ultrafast recovery behavior arises from the weak van der Waals binding between NO2 and the MoS2 surface. Our work suggests that FLMN prepared via mechanical exfoliation have a great potential for fabricating high-performance NO2 gas sensors.


Sign in / Sign up

Export Citation Format

Share Document