scholarly journals Surface-Modified Industrial Acrylonitrile Butadiene Styrene 3D Scaffold Fabrication by Gold Nanoparticle for Drug Screening

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 529 ◽  
Author(s):  
Kaudjhis Patrick Ulrich N’deh ◽  
Gyeong-Ji Kim ◽  
Kang-Hyun Chung ◽  
Jae-Soo Shin ◽  
Kwang-Sup Lee ◽  
...  

Biocompatibility is very important for cell growth using 3D printers, but biocompatibility materials are very expensive. In this study, we investigated the possibility of cell culture by the surface modification of relatively low-cost industrial materials and an efficient three-dimensional (3D) scaffold made with an industrial ABS filament for cell proliferation, spheroid formation, and drug screening applications. We evaluated the adequate structure among two-layer square shape 3D scaffolds printed by fused deposition modeling with variable infill densities (10–50%). Based on the effects of these scaffolds on cell proliferation and spheroid formation, we conducted experiments using the industrial ABS 3D scaffold (IA3D) with 40% of infill density, which presented an external dimension of (XYZ) 7650 µm × 7647 µm × 210 µm, 29.8% porosity, and 225 homogenous micropores (251.6 µm × 245.9 µm × 210 µm). In the IA3D, spheroids of cancer HepG2 cells and keratinocytes HaCaT cells appeared after 2 and 3 days of culture, respectively, whereas no spheroids were formed in 2D culture. A gold nanoparticle-coated industrial ABS 3D scaffold (GIA3D) exhibited enhanced biocompatible properties including increased spheroid formation by HepG2 cells compared to IA3D (1.3-fold) and 2D (38-fold) cultures. Furthermore, the cancer cells exhibited increased resistance to drug treatments in GIA3D, with cell viabilities of 122.9% in industrial GIA3D, 40.2% in IA3D, and 55.2% in 2D cultures when treated with 100 µM of mitoxantrone. Our results show that the newly engineered IA3D is an innovative 3D scaffold with upgraded properties for cell proliferation, spheroid formation, and drug-screening applications.

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1249 ◽  
Author(s):  
Jian Ren ◽  
Jia Yin

In this study, an ultra-broadband dielectric-resonator-based absorber for microwave absorption is numerically and experimentally investigated. The designed absorber is made of the carbon-loaded Acrylonitrile Butadiene Styrene (ABS) polymer and fabricated using the 3D printing technology based on fused deposition modeling with a quite low cost. Profiting from the fundamental dielectric resonator (DR) mode, the higher order DR mode and the grating mode of the dielectric resonator, the absorber shows an absorptivity higher than 90% over the whole ultra-broad operating band from 3.9 to 12 GHz. The relative bandwidth can reach over 100% and cover the whole C-band (4–8 GHz) and X-band (8–12 GHz). Utilizing the numerical simulation, we have discussed the working principle of the absorber in detail. What is more, the absorption performance under different incident angles is also simulated, and the results indicate that the absorber exhibits a high absorptivity at a wide angle of incidence. The advantages of low cost, ultra-broad operating band and a wide-angle feature make the absorber promising in the areas of microwave measurement, stealth technology and energy harvesting.


2020 ◽  
Vol 26 (2) ◽  
pp. 225-237
Author(s):  
Sunpreet Singh ◽  
Rupinder Singh

Purpose Additive manufacturing (AM) is one of the latest and most advanced technologies that are continuously expanding into various field applications. Undoubtedly, fused deposition modeling (FDM) is one of the oldest and extensively used AM technologies not only because of the advantage of low cost, comparatively moderate production speed and negligible wastage but also due to acceptance of a wide range of thermoplastics, reinforced and blended feedstock for making the end product suitable for service. The purpose of this work to perform mechanical characterization of standard samples printed on FDM with acrylonitrile butadiene styrene (ABS), shape memory polymer (SMP; make PolyflexTM) and ABS/PolyflexTM blend and a comparative study from AM view point. Design/methodology/approach A low-cost desktop-based FDM setup was used for the fabrication of the test specimens under different processing conditions. Experiments were conducted as per obtained control log, and statistical analysis was conducted to understand the effect of selected variables in response of measured properties. Further, scanning electron microscopy-based micrographs were analyzed to understand the fracture mechanisms. Findings The obtained results highlighted that the mechanical properties of FDM parts are strongly influenced by the selected process variables. However, in case of most of the measured properties, selection of suitable feedstock has dominated the other input variables. Further, the results of test parts made with in-house developed ABS/SMP blend have showed the attainment of remarkable values of both strength and elasticity. Originality/value This work is held to empower the use of FDM technology to fabricate advanced and robust components for serving highly demanding applications.


2020 ◽  
pp. 009524432093999
Author(s):  
Sivani Patibandla ◽  
Ahsan Mian

The extrusion-based three-dimensional printing technology such as fused deposition modeling (FDM) is the widely used one owing to its low cost. The FDM method can be used to fabricate parts with different fill densities, fill patterns, and process parameters such as extrusion temperature and print speed. In this research, influence of process parameters such as extrusion temperature and print speed on the physical characteristics such as the shape and the size of printed fibers in each layer, the fiber distance, and the fiber-to-fiber interface are investigated. In addition, their effects on mechanical characteristics of the printed samples are examined and interpreted with respect to the layer physical characteristics. To accomplish this, metastructure specimens were fabricated using acrylonitrile butadiene styrene polymer on a MakerBot 2X Replicator 3D printer. Three different extrusion temperatures (210, 230, and 250°C) and print speeds (100, 125, and 150 mm/s) were considered with an infill density of 50%. Optical microscopy was performed for layer physical characterization while the compression tests were done to evaluate the mechanical properties such as the failure strength, yield strength, and compressive modulus. It is observed that the print speed has minimal effect on mechanical properties; however, an improvement in mechanical properties is observed at higher fabrication temperature. Also, the lower fabrication temperature results in more uniform features within the layers as compared to those printed at higher extrusion temperature.


2019 ◽  
Vol 25 (11) ◽  
pp. 1249-1264 ◽  
Author(s):  
Amoljit Singh Gill ◽  
Parneet Kaur Deol ◽  
Indu Pal Kaur

Background: Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility. Method: SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed. Result & Conclusion: Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.


2021 ◽  
Vol 11 (3) ◽  
pp. 1272
Author(s):  
Bartłomiej Podsiadły ◽  
Piotr Matuszewski ◽  
Andrzej Skalski ◽  
Marcin Słoma

In this publication, we describe the process of fabrication and the analysis of the properties of nanocomposite filaments based on carbon nanotubes and acrylonitrile butadiene styrene (ABS) polymer for fused deposition modeling (FDM) additive manufacturing. Polymer granulate was mixed and extruded with a filling fraction of 0.99, 1.96, 4.76, 9.09 wt.% of CNTs (carbon nanotubes) to fabricate composite filaments with a diameter of 1.75 mm. Detailed mechanical and electrical investigations of printed test samples were performed. The results demonstrate that CNT content has a significant influence on mechanical properties and electrical conductivity of printed samples. Printed samples obtained from high CNT content composites exhibited an improvement in the tensile strength by 12.6%. Measurements of nanocomposites’ electrical properties exhibited non-linear relation between the supply voltage and measured sample resistivity. This effect can be attributed to the semiconductor nature of the CNT functional phase and the occurrence of a tunnelling effect in percolation network. Detailed I–V characteristics related to the amount of CNTs in the composite and the supply voltage influence are also presented. At a constant voltage value, the average resistivity of the printed elements is 2.5 Ωm for 4.76 wt.% CNT and 0.15 Ωm for 9.09 wt.% CNT, respectively. These results demonstrate that ABS/CNT composites are a promising functional material for FDM additive fabrication of structural elements, but also structural electronics and sensors.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1559
Author(s):  
Mohammad Reza Khosravani ◽  
Jonas Schüürmann ◽  
Filippo Berto ◽  
Tamara Reinicke

Application of Additive Manufacturing (AM) has significantly increased in the past few years. AM also known as three-dimensional (3D) printing has been currently used in fabrication of prototypes and end-use products. Considering the new applications of additively manufactured components, it is necessary to study structural details of these parts. In the current study, influence of a post-processing on the mechanical properties of 3D-printed parts has been investigated. To this aim, Acrylonitrile Butadiene Styrene (ABS) material was used to produce test coupons based on the Fused Deposition Modeling (FDM) process. More in deep, a device was designed and fabricated to fix imperfection and provide smooth surfaces on the 3D-printed ABS specimens. Later, original and treated specimens were subjected to a series of tensile loads, three-point bending tests, and water absorption tests. The experimental tests indicated fracture load in untreated dog-bone shaped specimen was 2026.1 N which was decreased to 1951.7 N after surface treatment. Moreover, the performed surface treatment was lead and decrease in tensile strength from 29.37 MPa to 26.25 MPa. Comparison of the results confirmed effects of the surface modification on the fracture toughness of the examined semi-circular bending components. Moreover, a 3D laser microscope was used for visual investigation of the specimens. The documented results are beneficial for next designs and optimization of finishing processes.


2021 ◽  
Vol 896 ◽  
pp. 29-37
Author(s):  
Ján Milde ◽  
František Jurina ◽  
Jozef Peterka ◽  
Patrik Dobrovszký ◽  
Jakub Hrbál ◽  
...  

The article focused on the influence of part orientation on the surface roughness of cuboid parts during the process of fabricating by FDM technology. The components, in this case, is simple cuboid part with the dimensions 15 mm x 15mm x 30 mm. A geometrical model is defined that considers the shape of the material filaments after deposition, to define a theoretical roughness profile, for a certain print orientation angle. Five different print orientations in the X-axis of the cuboid part were set: 0°, 30°, 45°, 60°, and 90°. According to previous research in the field of FDM technology by the author, the internal structure (infill) was set at the value of 70%. The method of 3D printing was the Fused Deposition Modeling (FDM) and the material used in this research was thermoplastic ABS (Acrylonitrile butadiene styrene). For each setting, there were five specimens (twenty five prints in total). Prints were fabricated on a Zortrax M200 3D printer. After the 3D printing, the surface “A” was investigated by portable surface roughness tester Mitutoyo SJ-210. Surface roughness in the article is shown in the form of graphs (Fig.7). Results show increase in part roughness with increasing degree of part orientation. When the direction of applied layers on the measured surface was horizontal, significant improvement in surface roughness was observed. Findings in this paper can be taken into consideration when designing parts, as they can contribute in achieving lower surface roughness values.


2018 ◽  
Vol 8 (8) ◽  
pp. 1275 ◽  
Author(s):  
Kai von Petersdorff-Campen ◽  
Yannick Hauswirth ◽  
Julia Carpenter ◽  
Andreas Hagmann ◽  
Stefan Boës ◽  
...  

Conventional magnet manufacturing is a significant bottleneck in the development processes of products that use magnets, because every design adaption requires production steps with long lead times. Additive manufacturing of magnetic components delivers the opportunity to shift to agile and test-driven development in early prototyping stages, as well as new possibilities for complex designs. In an effort to simplify integration of magnetic components, the current work presents a method to directly print polymer-bonded hard magnets of arbitrary shape into thermoplastic parts by fused deposition modeling. This method was applied to an early prototype design of a rotary blood pump with magnetic bearing and magnetic drive coupling. Thermoplastics were compounded with 56 vol.% isotropic NdFeB powder to manufacture printable filament. With a powder loading of 56 vol.%, remanences of 350 mT and adequate mechanical flexibility for robust processability were achieved. This compound allowed us to print a prototype of a turbodynamic pump with integrated magnets in the impeller and housing in one piece on a low-cost, end-user 3D printer. Then, the magnetic components in the printed pump were fully magnetized in a pulsed Bitter coil. The pump impeller is driven by magnetic coupling to non-printed permanent magnets rotated by a brushless DC motor, resulting in a flow rate of 3 L/min at 1000 rpm. For the first time, an application of combined multi-material and magnet printing by fused deposition modeling was shown. The presented process significantly simplifies the prototyping of products that use magnets, such as rotary blood pumps, and opens the door for more complex and innovative designs. It will also help postpone the shift to conventional manufacturing methods to later phases of the development process.


Author(s):  
Dominic Thaler ◽  
Nahal Aliheidari ◽  
Amir Ameli

Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.


Sign in / Sign up

Export Citation Format

Share Document