scholarly journals Graphene Platelets-Based Magnetoactive Materials with Tunable Magnetoelectric and Magnetodielectric Properties

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1783
Author(s):  
Ioan Bica ◽  
Eugen Mircea Anitas

We fabricate hybrid magnetoactive materials (hMAMs) based on cotton fibers, silicone oil, carbonyl iron and graphene nanoplatelets (nGr) at various mass concentrations ΦnGr. The obtained materials are used as dielectric materials for manufacturing plane electrical capacitors. The equivalent electrical capacitance Cp and resistance Rp are measured in an electric field of medium frequency f, without and respectively with a magnetic field of magnetic flux density B in the range from 0.1 T up to 0.5 T. The results are used to extract the components ϵr′ and ϵr″ of the complex relative permittivity ϵr*, and to reveal the magnitude of the induced magnetoelectric couplings kx and magnetodielectric effects MDE. It is shown that ϵr′, ϵr″, kx and MDE are significantly influenced by f,B and ΦnGr. We describe the underlying physical mechanisms in the framework of dipolar approximation and using elements of dielectric theory. The tunable magnetoelectric and magnetodielectric properties of hMAMs are useful for manufacturing electrical devices for electromagnetic shielding of living organisms.

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2060
Author(s):  
Ioan Bica ◽  
Eugen Mircea Anitas ◽  
Liviu Chirigiu

We present a simple, low-cost, and environmental-friendly method for the fabrication of hybrid magnetorheological composites (hMCs) based on cotton fibers soaked with a mixture of silicone oil (SO), carbonyl iron (CI) microparticles, and iron oxide microfibers (μF). The obtained hMCs, with various ratios (Φ) of SO and μF, are used as dielectric materials for manufacturing electrical devices. The equivalent electrical capacitance and resistance are investigated in the presence of an external magnetic field, with flux density B. Based on the recorded data, we obtain the variation of the relative dielectric constant (ϵr′), and electrical conductivity (σ), with Φ, and B. We show that, by increasing Φ, the distance between CI magnetic dipoles increases, and this leads to significant changes in the behaviour of ϵr′ and σ in a magnetic field. The results are explained by developing a theoretical model that is based on the dipolar approximation. They indicate that the obtained hMCs can be used in the fabrication of magneto-active fibers for fabrication of electric/magnetic field sensors and transducers.


2020 ◽  
Vol 21 (13) ◽  
pp. 4785
Author(s):  
Madalin Bunoiu ◽  
Eugen Mircea Anitas ◽  
Gabriel Pascu ◽  
Larisa Marina Elisabeth Chirigiu ◽  
Ioan Bica

An efficient, low-cost and environmental-friendly method to fabricate magneto-active fabrics (MAFs) based on cotton fibers soaked with silicone oil and iron oxide microfibers (mFe) at mass fractions 2 wt.%, 4 wt.% and 8 wt.% is presented. It is shown that mFe induce good magnetic properties in MAFs, which are subsequently used as dielectric materials for capacitor fabrication. The electrical properties of MAFs are investigated in a static magnetic field with intensities of 0 kA/m, 160 kA/m and 320 kA/m, superimposed on a medium-frequency electric field. The influence of mFe on the electrical capacitance and dielectric loss tangent is determined, and it can be observed that the electrical conductivity, dielectric relaxation times and magnetodielectric effects are sensibly influenced by the applied magnetic and electric fields. The results indicate that the MAFs have electrical properties which could be useful for protection against electromagnetic pollution or for health monitoring.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6498
Author(s):  
Gabriela-Eugenia Iacobescu ◽  
Ioan Bica ◽  
Larisa-Marina-Elisabeth Chirigiu

In this paper, we study the electrical properties of new hybrid magnetorheological suspensions (hMRSs) and propose a theoretical model to explain the dependence of the electric capacitance on the iron volumetric fraction, ΦFe, of the dopants and on the external magnetic field. The hMRSs, with dimensions of 30 mm×30 mm×2 mm, were manufactured based on impregnating cotton fabric, during heating, with three solutions of iron microparticles in silicone oil. Flat capacitors based on these hMRSs were then produced. The time variation of the electric capacitance of the capacitors was measured in the presence and absence of a magnetic field, B, in a time interval of 300 s, with Δt=1 s steps. It was shown that for specific values of ΦFe and B, the coupling coefficient between the cotton fibers and the magnetic dipoles had values corresponding to very stable electrical capacitance. Using magnetic dipole approximation, the mechanisms underlying the observed phenomena can be described if the hMRSs are considered continuous media.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


2021 ◽  
Vol 11 (10) ◽  
pp. 4567
Author(s):  
Xiaoqing Zhang ◽  
Yaowu Wang

An effective method is proposed in this paper for calculating the transient magnetic field and induced voltage in the photovoltaic bracket system under lightning stroke. Considering the need for the lightning current responses on various branches of the photovoltaic bracket system, a brief outline is given to the equivalent circuit model of the photovoltaic bracket system. The analytic formulas of the transient magnetic field are derived from the vector potential for the tilted, vertical and horizontal branches in the photovoltaic bracket system. With a time–space discretization scheme put forward for theses formulas, the magnetic field distribution in an assigned spatial domain is determined on the basis of the lightning current responses. The magnetic linkage passing through a conductor loop is evaluated by the surface integral of the magnetic flux density and the induced voltage is obtained from the time derivative of the magnetic linkage. In order to check the validity of the proposed method, an experiment is made on a reduced-scale photovoltaic bracket system. Then, the proposed method is applied to an actual photovoltaic bracket system. The calculations are performed for the magnetic field distributions and induced voltages under positive and negative lightning strokes.


2010 ◽  
Vol 129-131 ◽  
pp. 692-696
Author(s):  
Jian Bing Meng ◽  
Xiao Juan Dong ◽  
Chang Ning Ma

A mathematical model was developed to describe the oscillating amplitude of the plasma arc injected transverse to an external transverse alternating magnetic field. The characteristic of plasma arc under the external transverse alternating magnetic field imposed perpendicular to the plasma current was discussed. The effect of processing parameters, such as flow rate of working gas, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the oscillation of plasma arc were also analyzed. The results show that it is feasible to adjust the shape of the plasma arc by the transverse alternating magnetic field, which expands the region of plasma arc thermal treatment upon the workpiece. Furthermore, the oscillating amplitude of plasma arc decreases with decrease of the magnetic flux density. Under the same magnetic flux density, more gas flow rate, more arc current, and less standoff cause the oscillating amplitude to decrease. The researches have provided a deeper understanding of adjusting of plasma arc characteristics.


Author(s):  
Yongxing Gong ◽  
Fengqiu Xu ◽  
Xianze Xu ◽  
Kaiyang Zhang

Precision machining fields require the worktable to have a large-scale multi-degree-of-freedom motion capability. In order to provide a more accurate magnetic model for the control strategy decoupling process and the size parameter optimization design process of the maglev rotary table. This paper proposes a new magnetic modeling method based on the Two-Dimensional Harmonic method. Different from the existing harmonic method, this method simultaneously considers the tangential and radial magnetic field changes of circumferential magnetic array. And it eliminates the edge effect of the magnetic flux density distribution in the radial aperiodic direction. The magnetic force and torque are solved by the Lorenz integral formula and the Gaussian quadrature method. In order to verify the accuracy of the TDH method, the boundary element software RadiaTM is used for simulation, and a prototype is made for measurement. The experimental results shown that this method reduced the maximum error of the radial edge magnetic field from 104.19% to 3.29%. And it improved the calculation accuracy of magnetic force and torque by 60.74% and 84.39% respectively. This method does not rely on special example, and is beneficial to cross-platform applications. It is more suitable for realizing the magnetic modeling of the maglev rotary table with both rotational motion and large-stroke translational motion.


2014 ◽  
Vol 214 ◽  
pp. 143-150
Author(s):  
Piotr Graca

The paper presents numerical modeling of an Axial Active Magnetic Bearing (AAMB) based on two-dimensional (2D) magnetic field computation. The calculations, assisted by the Finite Element Method (FEM), have focused on the determination of the magnetic flux density and the magnetic force. Obtained magnetic field parameters were then measured and verified on a physical model.


Author(s):  
Zulkarnay Zakaria ◽  
Mohd Fahajumi Jumaah ◽  
Mohd Saiful Badri Mansor ◽  
Khairi Mat Daud ◽  
Mohd Hafiz Fazalul Rahiman ◽  
...  

Terapi merupakan antara teknik perubatan tertua dalam mengekalkan kesihatan badan terutama daripada aliran darah yang tidak baik, strok dan beberapa penyakit yang lain. Teknik ini termasuklah akupuntur, guasa dan juga urutan. Terdapat juga teknik terapi moden seperti terapi warna, terapi ozon, terapi dadah dan banyak lagi. Kertas kajian ini akan mengetengahkan penjana terapi elektromagnet, satu alat yang mempunyai potensi aplikasi terapi dalam bidang perubatan. Alat ini menghasilkan medan magnet berfrekuensi sederhana sebagai sumber terapi. Perkakasan yang berskala kecil berfrekuensi sederhana dan berkos rendah ini telah dibangunkan dan telah diuji pada tisu biologi bagi mengukur tahap ketembusan medan magnet. Ujian ini telah membuktikan bahawa medan magnet yang telah dihasilkan mampu menembusi tisu lembut bersaiz sehingga 2 cm dengan jarak 7 cm daripada sumber. Kebolehan penembusan sistem ini terhadap tisu lembut memberikan peluang yang cerah kepada kajian ini memandangkan medan magnet telah menunjukkan potensi sebagai sebahagian daripada terapi untuk memulihkan migraine, strok, kekejangan dan beberapa yang lain selain boleh diaplikasikan dalam pengimejan tomografi induksi magnet. Kata kunci: Terapi elektromagnet, medan magnet, penembusan, tisu lembut, aplikasi perubatan Therapy is among the oldest medication technique in maintaining the health of the body especially from bad blood circulation, stroke and several others. This technique includes acupuncture, guasa and also massage. There are also modern therapy techniques like colour therapy, water therapy, ozone therapy, drug therapy and others. This paper will highlight electromagnetic therapy generator, a device which has the potential of therapy application in medical field. This device produce medium frequency magnetic field as a therapy source. This small scale medium frequency and low cost hardware that has been developed was tested on the biological tissue for the purpose of measuring the magnetic field penetration. The testing has proven that the generated magnetic field is able to penetrate the soft tissue up to 2 cm with distance from the source up to 7 cm. The capability of the system penetrations through the soft tissues provide the bright future of this research since magnetic field have shown the potential as being part of the therapy for curing migraine, stroke, cramp and several others besides the application in the magnetic induction tomography imaging. Key words: Electromagnetic therapy, magnetic field, penetration, soft tissue; medical applications


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 182
Author(s):  
Jovan Maksimovic ◽  
Soon-Hock Ng ◽  
Tomas Katkus ◽  
Nguyen Hoai An Le ◽  
James W.M. Chon ◽  
...  

To harness light-matter interactions at the nano-/micro-scale, better tools for control must be developed. Here, it is shown that by applying an external electric and/or magnetic field, ablation of Si and glass under ultra-short (sub-1 ps) laser pulse irradiation can be controlled via the Lorentz force F = e E + e [ v × B ] , where v is velocity of charge e, E is the applied electrical bias and B is the magnetic flux density. The external electric E-field was applied during laser ablation using suspended micro-electrodes above a glass substrate with an air gap for the incident laser beam. The counter-facing Al-electrodes on Si surface were used to study debris formation patterns on Si. Debris was deposited preferentially towards the negative electrode in the case of glass and Si ablation. Also, an external magnetic field was applied during laser ablation of Si in different geometries and is shown to affect ripple formation. Chemical analysis of ablated areas with and without a magnetic field showed strong chemical differences, revealed by synchrotron near-edge X-ray absorption fine structure (NEXAFS) measurements. Harnessing the vectorial nature of the Lorentz force widens application potential of surface modifications and debris formation in external E-/B-fields, with potential applications in mass and charge spectroscopes.


Sign in / Sign up

Export Citation Format

Share Document