scholarly journals Biochemical, Ameliorative and Cytotoxic Effects of Newly Synthesized Curcumin Microemulsions: Evidence from In Vitro and In Vivo Studies

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 817
Author(s):  
Abbas Rahdar ◽  
Mohammad Reza Hajinezhad ◽  
Saman Sargazi ◽  
Maryam Zaboli ◽  
Mahmood Barani ◽  
...  

Curcumin is known to exhibit antioxidant and tissue-healing properties and has recently attracted the attention of the biomedical community for potential use in advanced therapies. This work reports the formulation and characterization of oil-in-water F127 microemulsions to enhance the bioavailability of curcumin Microemulsions showed a high encapsulation efficiency and prolonged release. To investigate the interactions of curcumin with one unit of the polymeric chain of surfactant F127, ethyl butyrate, and sodium octanoate, as well as the interaction between ethyl butyrate and one unit of the F127 polymer chain, the Density Functional Theory (DFT) calculations at the M06-2X level of theory, were performed in water solution. The MTT assay was used to assess the cytotoxicity of free and encapsulated curcumin on non-malignant and malignant cell lines. Combination effects were calculated according to Chou-Talalay’s principles. Results of in vitro studies indicated that MCF7 and HepG2 cells were more sensitive to curcumin microemulsions. Moreover, a synergistic relationship was observed between curcumin microemulsions and cisplatin in all affected fractions of MCF7 and HepG2 cells (CI < 0.9). For in vivo investigation, thioacetamide-intoxicated rats received thioacetamide (100 mg/kg Sc) followed by curcumin microemulsions (30 mg/kg Ip). Thioacetamide-intoxicated rats showed elevated serum liver enzymes, blood urea nitrogen (BUN), and creatinine levels, and a significant reduction in liver superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.05). Curcumin microemulsions reduced liver enzymes and serum creatinine and increased the activity of antioxidant enzymes in thioacetamide-treated rats in comparison to the untreated thioacetamide-intoxicated group. Histopathological investigations confirmed the biochemical findings. Overall, the current results showed the desirable hepatoprotective, nephroprotective, and anti-cancer effects of curcumin microemulsions.

2017 ◽  
Vol 5 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Ebrahim Abbasi Oshaghi ◽  
Mona Pourjafar ◽  
Seyde Somayeh Mirzajani ◽  
Roohollah Mohseni ◽  
Mehrnoosh Mousavi ◽  
...  

Background: Although acetaminophen (APAP) is considered safe at therapeutic doses, intake of high amounts of this drug can cause liver failure. In the present experiment, we examined the hepatoprotective effects of resveratrol (RES) in HepG2 cells and rat liver. Objectives: This study aimed to evaluate the influence of RES on liver function in rat model of necrosis and HepG2 cells. Materials and Methods: In this study, rats were randomly assigned into 4 groups (7 rats in each group) as follows; group 1: control rats (received normal saline), group 2: hepatotoxic control (control rats that received 640 mg/kg/d APAP), group 3: positive control (received 150 mg/kg N-acetylcysteine), group 4: RES (received 30 mg/kg RES). The animals were treated for 7 days. Afterwards, the levels of liver enzymes, protein carbonyl content, glutathione (GSH) level, and Tumor necrosis factor (TNF-α) level were determined. Results: In the in vitro experiment, APAP-induced HepG2 cells were treated with RES at different concentrations and various factors such as cell viability, liver enzymes, GSH and TNF-α levels were measured. Conclusions: Our results indicated that RES could normalize all these factors in vitro and in vivo (P<0.05). In fact, RES had potential hepatoprotective effect against APAP -induced hepatotoxicity in HepG2 cells and animal models mainly via dual change of oxidative stress and cytokine levels.


2021 ◽  
Vol 12 (2) ◽  
pp. 30
Author(s):  
Shabir Hassan ◽  
Berivan Cecen ◽  
Ramon Peña-Garcia ◽  
Fernanda Roberta Marciano ◽  
Amir K. Miri ◽  
...  

Different strategies have been employed to provide adequate nutrients for engineered living tissues. These have mainly revolved around providing oxygen to alleviate the effects of chronic hypoxia or anoxia that result in necrosis or weak neovascularization, leading to failure of artificial tissue implants and hence poor clinical outcome. While different biomaterials have been used as oxygen generators for in vitro as well as in vivo applications, certain problems have hampered their wide application. Among these are the generation and the rate at which oxygen is produced together with the production of the reaction intermediates in the form of reactive oxygen species (ROS). Both these factors can be detrimental for cell survival and can severely affect the outcome of such studies. Here we present calcium peroxide (CPO) encapsulated in polycaprolactone as oxygen releasing microparticles (OMPs). While CPO releases oxygen upon hydrolysis, PCL encapsulation ensures that hydrolysis takes place slowly, thereby sustaining prolonged release of oxygen without the stress the bulk release can endow on the encapsulated cells. We used gelatin methacryloyl (GelMA) hydrogels containing these OMPs to stimulate survival and proliferation of encapsulated skeletal myoblasts and optimized the OMP concentration for sustained oxygen delivery over more than a week. The oxygen releasing and delivery platform described in this study opens up opportunities for cell-based therapeutic approaches to treat diseases resulting from ischemic conditions and enhance survival of implants under severe hypoxic conditions for successful clinical translation.


2021 ◽  
Vol 22 (3) ◽  
pp. 1083
Author(s):  
Sukkum Ngullie Chang ◽  
Se Ho Kim ◽  
Debasish Kumar Dey ◽  
Seon Min Park ◽  
Omaima Nasif ◽  
...  

Polymethoxyflavanoids (PMFs) have exhibited a vast array of therapeutic biological properties. 5-O-Demethylnobiletin (5-DN) is one such PMF having anti-inflammatory activity, yet its role in hepatoprotection has not been studied before. Results from in vitro study revealed that 5-DN did not exert a high level of cytotoxicity on HepG2 cells at 40 μM, and it was able to rescue HepG2 cell death induced by carbon tetrachloride (CCl4). Subsequently, we investigated acute liver injury on BALB/c mice induced by CCl4 through the intraperitoneal injection of 1 mL/kg CCl4 and co-administration of 5-DN at (1 and 2 mg/kg) by oral gavage for 15 days. The results illustrated that treatment with 5-DN attenuated CCl4-induced elevated serum aminotransferase (AST)/alanine aminotransferase (ALT) ratio and significantly ameliorated severe hepatic damage such as inflammation and fibrosis evidenced through lesser aberrations in the liver histology of 5-DN dose groups. Additionally, 5-DN efficiently counteracted and equilibrated the production of ROS accelerated by CCl4 and dramatically downregulated the expression of CYP2E1 vitally involved in converting CCl4 to toxic free radicals and also enhanced the antioxidant enzymes. 5-DN treatment also inhibited cell proliferation and inflammatory pathway abnormally regulated by CCl4 treatment. Furthermore, the apoptotic response induced by CCl4 treatment was remarkably reduced by enhanced Bcl-2 expression and noticeable reduction in Bax, Bid, cleaved caspase 3, caspase 9, and apaf-1 expression. 5-DN treatment also induced the conversion of LC3 and promoted the autophagic flux. Conclusively, 5-DN exhibited hepatoprotective effects in vitro and in vivo and prevented liver fibrosis induced by CCl4.


2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2974 ◽  
Author(s):  
Emilly Lima ◽  
Rafaela Alves ◽  
Gigliola D´Elia ◽  
Talita Anunciação ◽  
Valdenizia Silva ◽  
...  

Croton matourensis Aubl. (synonym Croton lanjouwensis Jabl.), popularly known as “orelha de burro”, “maravuvuia”, and/or “sangrad’água”, is a medicinal plant used in Brazilian folk medicine as a depurative and in the treatment of infections, fractures, and colds. In this work, we investigated the chemical composition and in vitro cytotoxic and in vivo antitumor effects of the essential oil (EO) from the leaves of C. matourensis collected from the Amazon rainforest. The EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC–MS) and gas chromatography with flame ionization detection (GC–FID), respectively. In vitro cytotoxicity of the EO was assessed in cancer cell lines (MCF-7, HCT116, HepG2, and HL-60) and the non-cancer cell line (MRC-5) using the Alamar blue assay. Furthermore, annexin V-FITC/PI staining and the cell cycle distribution were evaluated with EO-treated HepG2 cells by flow cytometry. In vivo efficacy of the EO (40 and 80 mg/kg/day) was demonstrated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The EO included β-caryophyllene, thunbergol, cembrene, p-cymene, and β-elemene as major constituents. The EO exhibited promising cytotoxicity and was able to cause phosphatidylserine externalization and DNA fragmentation without loss of the cell membrane integrity in HepG2 cells. In vivo tumor mass inhibition rates of the EO were 34.6% to 55.9%. Altogether, these data indicate the anticancer potential effect of C. matourensis.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hiroe Go ◽  
Jin Ah Ryuk ◽  
Hye Won Lee ◽  
In Sil Park ◽  
Ki-Jung Kil ◽  
...  

The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. Inin vivostudy using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activityin vitro. These observations support the idea that Sagunja-tang is bioavailable bothin vivoandin vitroand could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Yu ◽  
Xi Xu ◽  
Jing Zhang ◽  
Xuan Xia ◽  
Fen Xu ◽  
...  

A glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LR) had been experimentally and clinically shown to ameliorate nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate the beneficial effect of LR on NAFLD in vivo and in vitro and its underlying molecular mechanism. The effects of LR were examined on the high-fat diet-induced in vivo model in mice and in vitro model of NAFLD in human HepG2 cells. Liver tissues and HepG2 cells were procured for measuring lipid metabolism, histological examination, and western blot analysis. LR administration significantly lowered the serum lipid profile and lipid disposition in vitro and in vivo because of the altered expression of enzymes on hepatic gluconeogenesis and lipid metabolism. Moreover, LR significantly decreased Src homology region 2 domain-containing phosphatase-1 (SHP1) and then increased the expression of phosphorylated-AMP-activated protein kinase (p-AMPK). However, the overexpression of SHP1 mediated by lentivirus vector reversed LR-induced improvement in lipid deposition. Moreover, SHP1 silencing could further increase the expression of p-AMPK to ameliorate lipid metabolism and relative lipogenic gene induced by LR. In addition, abrogation of AMPK by Compound C eliminated the protective effects of LR on lipid metabolism without changing the expression of SHP1. LR markedly prevented NAFLD through adjusting lipid metabolism via SHP1/AMPK signaling pathway.


1994 ◽  
Vol 266 (5) ◽  
pp. E786-E795 ◽  
Author(s):  
H. L. Reed ◽  
M. Quesada ◽  
R. L. Hesslink ◽  
M. M. D'Alesandro ◽  
M. T. Hays ◽  
...  

Swine exposed to cold air have elevated serum values of total triiodothyronine (TT3) and free T3 (FT3). To characterize the mechanism of these increases, we measured in vivo kinetic parameters after a bolus intravenous injection of 125I-labeled T3 by use of both multicompartmental (MC) and noncompartmental (NC) methods and in vitro hepatic type I iodothyronine 5'-deiodinase (5'D-I) activity. Ten ad libitum-fed 5-mo-old boars were divided into two groups, living for 25 days in either control (22 degrees C) or cold (4 degrees C) conditions. Cold-exposed animals consumed 50% more calories than control animals but showed no difference in total body weight, percent body fat, or plasma volume. Thyroid gland weight was increased 86% (P < 0.004), as was serum total thyroxine (TT4) (48%), free T4 (FT4) (61%), TT3 (103%), and FT3 (107%), whereas serum thyrotropin (TSH) was not different in cold-exposed compared with control animals. The T3 plasma clearance rate was similar between groups when both MC and NC techniques were used. However, T3 plasma appearance rate (PAR) was elevated in cold-treated animals 110% over controls by MC (P < 0.001) and 83% by NC methods (P < 0.001). The animal total hormone pool of T3 was increased 76% (MC) and 53% (NC) compared with control (P < 0.01). The Michaelis constant of hepatic 5'D-I was not different between groups, but the maximum enzyme velocity increased (106%; P < 0.02). Therefore cold exposure for 25 days is associated with increased energy intake, thyroid size, T3 PAR, and hepatic 5'D-I activity with little change in serum TSH.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Ma G. E. González-Yáñez ◽  
Catalina Rivas-Morales ◽  
María A. Oranday-Cárdenas ◽  
María J. Verde-Star ◽  
María A. Núñez-González ◽  
...  

There is a trend to use medicinal plants for primary medical care or as dietary supplements; however, the safety of many of these plants has not been studied. The objective of this work was to determine the toxic effect of the aqueous extract of Calea ternifolia (C. zacatechichi), known popularly as “dream herb” in vivo and in vitro in order to validate its safety. In vivo, the extract had moderate toxicity on A. salina. In vitro, the extract induced eryptosis of 73% at a concentration of 100 μg·mL−1 and it inhibited CYP3A by 99% at a concentration of 375 μg/mL. After administering 8.5 mg/kg of C. ternifolia to rats, we found a reduction in platelets and leukocytes and an increase in urea and the liver enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Histological analysis showed spongiform changes in the proximal tubules of renal tissue and a lymphoid infiltrate in liver tissue. This plant is used in the treatment of diabetes, and it is commercialized as a dietary supplement in several countries. Our results show renal and hepatic toxicity; therefore, more profound research on the toxicity of this plant is needed.


Sign in / Sign up

Export Citation Format

Share Document