scholarly journals A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1086
Author(s):  
Rabia Arshad ◽  
Tanveer A. Tabish ◽  
Maria Hassan Kiani ◽  
Ibrahim M. Ibrahim ◽  
Gul Shahnaz ◽  
...  

Ciprofloxacin (CIP), a potent anti-bacterial agent of the fluroquinolone family, shows poor solubility and permeability, thus leading to the development of intracellular pathogens induced multi-drug resistance and biofilms formation. To synergistically improve the biopharmaceutical parameters of CIP, a hyaluronic acid (FDA approved biocompatible polymer) functionalized self-nano emulsifying drug delivery system (HA-CIP-SNEDDS) was designed in the present study. SNEDDS formulations were tested via solubility, droplet size, zeta potential, a polydispersity index, thermodynamic stability, surface morphology, solid-state characterization, drug loading/release, cellular uptake, and biocompatibility. The final (HA-CIP-SNEDDS) formulation exhibited a mean droplet size of 50 nm with the 0.3 poly dispersity index and negative zeta potential (−11.4 mV). HA-based SNEDDS containing CIP showed an improved ability to permeate goat intestinal mucus. After 4 h, CIP-SNEDDS showed a 2-fold and HA-CIP-SNEDDS showed a 4-fold permeation enhancement as compared to the free CIP. Moreover, 80% drug release of HA-CIP-SNEDDS was demonstrated to be superior and sustained for 72 h in comparison to free CIP. However, anti-biofilm activity of HA-CIP-SNEDDS against Salmonella typhi was higher than CIP-SNEDDS and free CIP. HA-CIP-SNEDDS exhibited increased biocompatibility and improved oral pharmacokinetics as compared to free CIP. Taken together, HA-CIP-SNEDDS formulation seems to be a promising agent against Salmonella typhi with a strong targeting potential.

Author(s):  
MAGFIRAH ◽  
INDAH KURNIA UTAMI

Objective: Parang romang (Boehmeria virgata) is one of the traditional medicines that are used empirically by Makassar tribal healers, South Sulawesi, as an antitumor drug. This traditional medicine contains secondary metabolites such as alkaloids, flavonoids, tannins, and saponins. However, secondary metabolites of those leaves extract have low solubility in water. Hence, to be formula, self-nanoemulsifying drug delivery system (SNEDDS) is one of the solutions to increase the extract solubility. Methods: The optimization of two formula optimum SNEDDS parang romang leaves (T80PGMZ and T20PGMZ) was using the simple lattice design (SLD) method which will give 28 SNEDDS formula parang romang leaves each of which the formula is tested for its characteristics as a critical point include emulsification time, % transmittance, drug loading, particle size, zeta potential, polydispersity index, and morphology particle. Results: The results of SNEDDS characterization obtained the optimum formula T80PGMZ with emulsification time 12.6 s, % transmittance 92.21%, drug loading 68.21 ppm, particle size 370.26 nm, zeta potential −31.4 mV, polydispersity index of 0.615, and regular particle morphology with spherical chunks at a magnification of 10,000 times with a particle size of 10 μm. Conclusion: SNEDDS of parang romang leaves extracts that used olive oil as oil phase, Tween 80 as a surfactant, and propylene glycol as the cosurfactant provided nanoemulsion with good characteristics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1412
Author(s):  
Murtada A. Oshi ◽  
Juho Lee ◽  
Jihyun Kim ◽  
Nurhasni Hasan ◽  
Eunok Im ◽  
...  

Cyclosporine A (CsA) is a potent immunosuppressant for treating ulcerative colitis (UC). However, owing to severe systemic side effects, CsA application in UC therapy remains limited. Herein, a colon-targeted drug delivery system consisting of CsA crystals (CsAc)-loaded, Eudragit S 100 (ES)-coated alginate microparticles (CsAc-EAMPs) was established to minimize systemic side effects and enhance the therapeutic efficacy of CsA. Homogeneously-sized CsAs (3.1 ± 0.9 μm) were prepared by anti-solvent precipitation, followed by the fabrication of 47.1 ± 6.5 μm-sized CsAc-EAMPs via ionic gelation and ES coating. CsAc-EAMPs exhibited a high drug loading capacity (48 ± 5%) and a CsA encapsulation efficacy of 77 ± 9%. The in vitro drug release study revealed that CsA release from CsAc-EAMPs was suppressed under conditions simulating the stomach and small intestine, resulting in minimized systemic absorption and side effects. Following exposure to the simulated colon conditions, along with ES dissolution and disintegration of alginate microparticles, CsA was released from CsAc-EAMPs, exhibiting a sustained-release profile for up to 24 h after administration. Given the effective colonic delivery of CsA molecules, CsAc-EAMPs conferred enhanced anti-inflammatory activity in mouse model of dextran sulfate sodium (DSS)-induced colitis. These findings suggest that CsAc-EAMPs is a promising drug delivery system for treating UC.


Author(s):  
AMRIT PAL SINGH ◽  
GOPAL L. KHATIK ◽  
VIJAY MISHRA ◽  
NAVNEET KHURANA ◽  
NEHA SHARMA ◽  
...  

Objective: The aim of the present study was to develop and characterize self-nano emulsifying drug delivery system (SNEDDS) of methanolic extract of Eriobotrya japonica (Thunb.) Lindl. (E. japonica) leaves. Further in vitro antioxidant and antidiabetic potential of an optimized batch of SNEDDS was explored. Methods: Oil (Labrafil M 1944 CS), surfactant (Tween 80) and co-surfactant (Transcutol P) were selected on the basis of solubility of the methanolic extract. Twenty-seven batches of SNEDDS were prepared with different compositions of oil, surfactant and co-surfactant. The optimized batch was evaluated for its entrapment efficiency, droplet size, polydispersity index (PDI), zeta potential, transmission electron microscopy (TEM). Further, DPPH assay and α-amylase activity were also performed to check the antioxidant and antidiabetic potential of prepared SNEDDS. Results: The optimized design suggested that 10% of Labrafil M 1944CS, 30% of Tween 80 and 60% of Transcutol P could develop SNEDDS with 208 nm mean droplet size, 99.64% drug loading, 0.156 PDI and-6 mV zeta potential. TEM image confirmed the droplet size less than 100 nm and the spherical shape of SNEDDS. In vitro antioxidant and antidiabetic activities of SNEDDS revealed the increased efficacy as compared to that of the ascorbic acid and acarbose, respectively. Conclusion: The optimized batch of SNEDDS was found to improve the antioxidant and antidiabetic efficacy of methanolic extract of E. japonica.


2020 ◽  
pp. 238-243
Author(s):  
Retno Sunarminingsih Sudibyo ◽  
Lukman Mahdi ◽  
Ronny Martien

Essential oil of Curcuma mangga Val. has been reported to have cytotoxic effect against cancer cell lines. But this oil is unstable in dispensing so that a self nano-emulsifying drug delivery system (SNEDDS) of the oil was conducted to solve the problem and improve its potency. In the study, optimization, verification, characterization, and stability test of the SNEDDS formula were carried out respectively by simplex lattice design (SLD) on Design Expert ver. 10 software, droplet size and Zeta potential determinations using particle size analyzer (PSA) instrument, as well as heating-cooling and freeze-thaw methods. The best SNEDDS formula resulted was Miglyol : Tween 80 : PEG 400 = 16.034% : 68.380% : 15.586%; with transmittance of 84.47 + 1.05%, droplet size of 15.75 nm, zeta potential of -8.54 mV, polydispersity index (PDI) of 0.188, emulsifying time of 49.67 + 1.7 seconds in distilled water, 24.33 + 4.19 seconds in artificial gastric fluid and 21.33 + 2.87 seconds in artificial intestine fluid. After a freeze-thaw test there was no change on the emulsion’s clarity, color, smell, as well as no separation, which means that the formula was stable thermodynamically. The optimum SNEDDS formula resulted has small particle size, better emulsifying time in artificial gastric and intestine fluids, as well as better thermodynamic stability, which in turn will improve the cytotoxic activity of the Curcuma mangga Val. rhizome oil toward cancer cells.


Author(s):  
Prabhat Kumar Sahoo ◽  
Neha S.L ◽  
Arzoo Pannu

Lipids are used as vehicles for the preparation of various formulations prescribed for administrations, including emulsions, ointments, suspension, tablets, and suppositories. The first parental nano-emulsion was discovered from the 1950s when it was added to the intravenous administration of lipid and lipid-soluble substances. Lipid-based drug delivery systems are important nowadays. Solid nanoparticles (SLN) and Nanostructured lipid carriers (NLC) are very proficient due to the ease of production process, scale-up capability, bio-compatibility, the biodegradability of formulation components and other specific features of the proposed route. The administration or nature of the materials must be loaded into these delivery systems. The main objectives of this review are to discuss an overview of second-generation nanoparticles, their limitations, structures, and route of administration, with emphasis on the effectiveness of such formulations. NLC is the second generation of lipid nanoparticles having a structure like nanoemulsion. The first generation of nanoparticles was SLN. The difference between both of them is at its core. Both of them are a colloidal carrier in submicron size in the range of 40-1000 nm. NLC is the most promising novel drug delivery system over the SLN due to solving the problem of drug loading and drug crystallinity. Solid and liquid lipids combination in NLC formation, improve its quality as compare to SLN. NLC has three types of structures: random, amorphous, and multiple. The random structure containing solid-liquid lipids and consisting crystal and the liquid lipid irregular in shape; thereby enhance the ability of the lipid layer to pass through the membrane. The second is the amorphous structure. It is less crystalline in nature and can prevent the leakage of the loaded drug. The third type is multiple structures, which have higher liquid lipid concentrations than other types. The excipients used to form the NLC are bio-compatible, biodegradable and non-irritating, most of which can be detected using GRAS. NLC is a promising delivery system to deliver the drug through pulmonary, ocular, CNS, and oral route of administration. Various methods of preparation and composition of NLC influence its stability Parameters. In recent years at the educational level, the potential of NLC as a delivery mechanism targeting various organs has been investigated in detail.


Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


2021 ◽  
Vol 27 ◽  
Author(s):  
Bapi Gorain ◽  
Bandar E. Al-Dhubiab ◽  
Anroop Nair ◽  
Prashant Kesharwani ◽  
Manisha Pandey ◽  
...  

: The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a novel platform of advanced drug delivery with improved efficacy and safety.


2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


Sign in / Sign up

Export Citation Format

Share Document