scholarly journals Deep-Ultraviolet Transparent Conductive MWCNT/SiO2 Composite Thin Film Fabricated by UV Irradiation at Ambient Temperature onto Spin-Coated Molecular Precursor Film

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1348
Author(s):  
Hiroki Nagai ◽  
Naoki Ogawa ◽  
Mitsunobu Sato

Deep-ultraviolet (DUV) light-transparent conductive composite thin films, consisting of dispersed multiwalled carbon nanotubes (MWCNTs) and SiO2 matrix composites, were fabricated on a quartz glass substrate. Transparent and well-adhered amorphous thin films, with a thickness of 220 nm, were obtained by weak ultraviolet (UV) irradiation (4 mW cm−2 at 254 nm) for more than 6 h at 20−40 °C onto the precursor films, which were obtained by spin coating with a mixed solution of MWCNT in water and Si(IV) complex in ethanol. The electrical resistivity of MWCNT/SiO2 composite thin film is 0.7 Ω·cm, and transmittance in the wavelength region from DUV to visible light is higher than 80%. The MWCNT/SiO2 composite thin film showed scratch resistance at pencil hardness of 8H. Importantly, the resistivity of the MWCNT/SiO2 composite thin film was maintained at the original level even after heat treatment at 500 °C for 1 h. It was observed that the heat treatment of the composite thin film improved durability against both aqueous solutions involving a strong acid (HCl) and a strong base (NaOH).

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3404
Author(s):  
Naoki Ogawa ◽  
Hiroki Nagai ◽  
Yukihiro Kudoh ◽  
Takeyoshi Onuma ◽  
Taichi Murayama ◽  
...  

A single-walled carbon nanotube (SWCNT)-silica composite thin film on a quartz glass was formed by ultraviolet irradiation (20–40 °C) onto a spin-coated precursor film. With 7.4 mass% SWCNTs, the electrical resistivity reached 7.7 × 10−3 Ω·cm after UV-irradiation. The transmittance was >80% at 178–2600 nm, and 79%–73% at 220–352 nm. Heat treatment increased the transparency and pencil hardness, without affecting the low electrical resistivity. Raman spectroscopy and microscopic analyses revealed the excellent film morphology with good SWCNT dispersal. The low refractive index (1.49) and haze value (<1.5%) are invaluable for transparent windows for novel optoelectronic devices.


2011 ◽  
Vol 254 ◽  
pp. 167-170 ◽  
Author(s):  
Subodh Srivastava ◽  
Sumit Kumar ◽  
Vipin Kumar Jain ◽  
Y.K. Vijay

In the present work we have reported the effect of temperature on the gas sensing properties of pure Polyaniline (PANI) and Multiwall carbon nanotube (MWNT) doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and MWNT doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline using ammonium persulfate in an acidic medium. The thin sensing film of chemically synthesized PANI and MWNT doped PANI composite were deposited onto finger type Cu-interdigited electrodes using spin cast technique to prepared chemiresistor type gas sensor. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature, MWNT doped PANI composite sensor shows higher response value and sensitivity with good repeatability in comparison to pure PANI thin film sensor. It was also observed that both PANI and MWNT doped PANI composite thin film based sensors showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151012
Author(s):  
Natangue Heita Shafudah ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

Cubic or tetragonal zirconia thin films of transparent and 100 nm thickness were selectively formed on a quartz glass substrate by heat-treating the molecular precursor films involving Zr(IV) complexes of nitrilotriacetic acid, at 500[Formula: see text]C in air for 1 h. A precursor solution was prepared by a reaction of the ligand and zirconium tetrabutoxide in alcohol under the presence of butylamine. By the addition of H2O2 or H2O into the solution, the spin-coated precursor films were converted to cubic zirconia thin films by the abovementioned procedure. Further, the identical phase was produced also in the case of the electro-sprayed precursor film which was formed by an addition of H2O2 into the solution. On the other hand, the tetragonal zirconia thin film was obtained from a precursor film formed by using a solution dissolving the original Zr(IV) complex of the ligand, without H2O2 nor H2O. The crystal structure of all thin films was determined by using both the X-ray diffraction (XRD) patterns and Raman spectra. Thus, the zirconia thin films of both crystals could be facilely and selectively obtained with no use of hetero-metal ion stabilizers. The XPS spectra of the thin films show that the O/Zr ratio of the cubic phase is 1.37 and slightly larger than tetragonal one (1.29), and also demonstrate that the nitrogen atoms, which may contribute to stabilize these metastable phases at room temperature, of about 5−7 atomic% was remained in the resultant thin films. The adhesion strengths of cubic zirconia thin film onto the quartz glass substrate was 68 MPa and larger than that of tetragonal one, when the precursor films were formed via a spin coating process. The optical and surface properties of the thin films were also examined in relation to the crystal systems.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 348 ◽  
Author(s):  
Hsiang-Jung Wu ◽  
Kota Tanabe ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

Photo-induced super-hydrophilic thin films were fabricated on a quartz glass substrate by ultraviolet (UV) irradiation of a molecular precursor film at room temperature. A molecular precursor film exhibiting high solubility to both ethanol and water was obtained by spin-coating a solution involving a Ti(IV) complex; this complex was prepared by the reaction of Ti(IV) alkoxide with butylammonium hydrogen oxalate and hydrogen peroxide in ethanol. Transparent and well-adhered amorphous thin films of 160–170 nm thickness were obtained by weak UV irradiation (4 mW·cm−2 at 254 nm) of the precursor films for over 4 h at room temperature. The resultant thin films exhibiting low refractive indices of 1.78–1.79 were mechanically robust and water-insoluble. The chemical components of the thin films were examined by means of Fourier transform-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) spectra, focusing on the presence of the original ligands. The super-hydrophilic properties (evaluated based on the water contact angles on the surfaces) of the thin films after being kept in a dark condition overnight emerged when the aforementioned UV-light irradiation was performed for 10 min. It was additionally clarified that the super-hydrophilicity can be photo-induced repeatedly by UV irradiation for 10 min (indicated by a contact angle smaller than 4°) even after the hydrophilic level of the thin films had once been lowered by being in a dark condition for 4 h.


1999 ◽  
Vol 14 (2) ◽  
pp. 592-596 ◽  
Author(s):  
S. Kim ◽  
T. Fujimoto ◽  
T. Manabe ◽  
I. Yamaguchi ◽  
T. Kumagai ◽  
...  

Dense and smooth BaTiO3 thin films were prepared on SrTiO3 (100) substrates by the dipping-pyrolysis process using a mixed precursor solution of barium and titanium naphthenates. Combination effects of prefiring [at 150–450 °C in air or low oxygen partial pressure, p(O2)[ and final heat treatment [at 850 °C in air or low p(O2)[ on preparation of BaTiO3 thin films were examined. An epitaxial BaTiO3 thin film with a dense and smooth surface consisting of nanosized grains about 70 nm was prepared by prefiring under low p(O2) at 250 °C and final heat treatment under low p (O2) at 850 °C.


Nanoscale ◽  
2020 ◽  
Vol 12 (33) ◽  
pp. 17213-17221 ◽  
Author(s):  
Wen-Qing Liang ◽  
Ying Li ◽  
Jing-Li Ma ◽  
Yue Wang ◽  
Jing-Jing Yan ◽  
...  

An air-stable and deep-ultraviolet-sensitive photodetector was fabricated using a solution-processed ternary copper halide Cs3Cu2I5 thin film as the light absorber.


1996 ◽  
Vol 453 ◽  
Author(s):  
K. Ozawa ◽  
Y. Sakka ◽  
M. Amano

AbstractLiSbO3thin films have been prepared by the sol-gel process with metal alkoxides using a spin-coating method. The (Oll)-oriented and randomly oriented LiSbO3thin films are obtained by the precursor film crystallizing under an atmosphere of a flowing mixture of water vapor and oxygen, and an air atmosphere, respectively. The two different atmospheres also affect the crystallization temperature of the films. The electrical conductivity of the (Oll)-oriented LiSbO3thin film is approximately one order of magnitude larger than that of the randomly oriented LiSbO3thin film in the temperature range of 380 to 600°C.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3352
Author(s):  
Yutaka Suwazono ◽  
Takuro Murayoshi ◽  
Hiroki Nagai ◽  
Mitsunobu Sato

A single-walled carbon nanotube/anatase (SWCNT/anatase) composite thin film with a transmittance of over 70% in the visible-light region was fabricated on a quartz glass substrate by heat treating a precursor film at 500 °C in air. The precursor film was formed by spin coating a mixed solution of the titania molecular precursor and well-dispersed SWCNTs (0.075 mass%) in ethanol. The anatase crystals and Ti3+ ions in the composite thin films were determined by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The effect of the heating process on the SWCNTs was analyzed using Raman spectroscopy. The composite film showed an even surface with a scratch resistance of 4H pencil hardness, as observed using field-emission scanning electron microscopy and atomic force microscopy. The electrical resistivity and optical bandgap energy of the composite thin film with a thickness of 100 nm were 6.6 × 10−2 Ω cm and 3.4 eV, respectively, when the SWCNT content in the composite thin film was 2.9 mass%. An anodic photocurrent density of 4.2 μA cm−2 was observed under ultraviolet light irradiation (16 mW cm−2 at 365 nm) onto the composite thin film, thus showing excellent properties as a photoelectrode without conductive substrates.


1999 ◽  
Vol 13 (27) ◽  
pp. 983-989 ◽  
Author(s):  
R. KITA ◽  
Y. MATSU ◽  
Y. MASUDA ◽  
S. YANO

Doping effect of Er on the resistance degradation of SrTiO 3 thin films was investigated. The rate of the resistance degradation was decreased with the increase of the Er content in the films. The increase in the leakage current density at 100°C for the Er-0.186-mol%-doped SrTiO 3 thin film was less than one order of magnitude even after 1000 h, while that for undoped SrTiO 3 thin films, it was by about one order of magnitude after 10 h. The Er-doped STO thin film also showed high stability of the interface between the films and the Pt electrodes against heat treatment in N 2.


Sign in / Sign up

Export Citation Format

Share Document