scholarly journals Adsorption of methylene blue from aqueous solutions by pyrolusite ore

2018 ◽  
Vol 18 (44) ◽  
pp. 5-11 ◽  
Author(s):  
Nizamettin Demirkıran ◽  
G D Turhan Özdemir ◽  
M Saraç ◽  
M Dardağan

In this study, the adsorption of methylene blue dye was examined by using pyrolusite ore as a low-cost alternative adsorbent source. Pyrolusite, which contains mainly MnO2, is a manganese ore. The effects of the initial concentration of dye, contact time, initial pH of solution, adsorbent dosage, stirring speed of solution, and average particle size of adsorbent on the adsorption of methylene blue were studied. It was found that the percentage of the adsorbed dye increased with increasing the amount of pyrolusite. While the initial dye concentration, initial pH, contact time, stirring speed, particle size, and adsorbent dosage were 25 ppm, 6, 90 min, 250 rpm, 63 µm, and 12 g/l, respectively, the efficiency of dye adsorption on pyrolusite ore was 99%. The isotherm and kinetic studies relating to this adsorption process were also made. It was found that the equilibrium data followed the Langmuir isotherm model while the kinetic of process could be described by the pseudo-second order kinetic model.

2021 ◽  
Author(s):  
NORAIN ISA ◽  
Mohamed Syazwan Osman ◽  
Haslinda Abdul Hamid ◽  
Nurdiana Samsulrizal ◽  
Vicinisvarri Inderan ◽  
...  

Abstract The textile industry is a heavy producer of wastewater, which may result in the discharge of toxic dyes into the environment. Methylene blue (MB) is an example of the most used dye in the textile industry. It is difficult to degrade MB under normal conditions due to its highly stable molecules. Therefore, a catalyst route is desired in MB reduction. The catalyst chosen in this work was silver nanoparticles (AgNPs) synthesised by a biological method utilising shortleaf spikesedge extract (SSE) as a reducing agent. The formations of SSE driven AgNPs were monitored using visual observation (colour), ultraviolet-visible spectroscopy (UV-vis), and transmission electron microscopy (TEM). The different process variables (concentration of AgNO3, concentration of SSE, reaction time, temperature and pH) upon synthesis of SSE driven AgNPs were evaluated based on the absorbance of surface plasmon resonance (SPR) band. The TEM image showed that SSE driven AgNPs are highly dispersed with a quasi-spherical shape and an average particle size of approximately 17.64 nm. For the catalytic study, the reduction of MB was evaluated using two systems. A detailed batch study of the removal efficiency (%RE) and kinetics was done at ambient temperature, various MB initial concentrations, and reaction time. The batch study for System 2 clearly showed that SSE driven AgNPs exhibited 100% reduction of MB at 30–100 mg/L initial concentration (sample coding of MB30, MB50, MB70 and MB100) between 1.5 and 5.0 min reaction time. The kinetic data best fitted a pseudo-first-order kinetic model with the highest reaction rate of 2.5715 min-1. The reduction of MB occurs via the electron relay effect. These findings demonstrate that the SSE driven AgNPs are a promising candidate with potential influence on coloured wastewater.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Asma Nasrullah ◽  
Hizbullah Khan ◽  
Amir Sada Khan ◽  
Zakaria Man ◽  
Nawshad Muhammad ◽  
...  

The ash ofC. polygonoides(locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed thatC. polygonoidesash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Eze Nkechinyere Olivia ◽  
Ejimofor Samuel Adimchinobi ◽  
Onuegbu Theresa Uzoma

AbstractIn view of the global need to curb the effect of contaminants in waste water on our environment, the adsorption potentials of modified carbon from bambaranut (Vigna subterranean) shell was investigated for its efficiency in the removal of methylene blue from waste water. The adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) determination and Scanning Electron Microscopy (SEM), as well as other standard laboratory procedures. The prepared material was used for the uptake of MB from aqueous solution in a batch process, using UV spectrophotometer Model 752 at 620nm to analyze for the residual dye concentration. The effect of operational parameters such as contact time, adsorbent dosage, initial dye concentration and pH were analyzed to determine the factors controlling the rate of adsorption. Results from the study showed that the active carbon prepared was a porous material, with surface area of 193 m2/g, average pore size of about 10.98nm, and pore volume of 0.530cm3/g. With increase in initial dye concentration from 15mg/l to 75mg/l, a decrease in percent adsorption from 95.4% to 72.19% was observed. Increase in adsorbent dosage (from 0.1g to 0.5g), contact time (from 5 min to 40 min) and pH from 2 to 10 resulted in increase in percent adsorption from 84.03% to 98.83%, 54.24% to 84% and 48.17% to 84.03% respectively. About 98.83% removal of MB dye was achieved after 20 min, at pH of 6, temperature of 27±2oC, 0.5g weight of adsorbent and initial concentration of 60mg/l of 50ml MB dye solution. Langmuir isotherm best fits the equilibrium adsorption data with R2 = 0.996; the adsorption intensity obtained from Freundlich model (n>1) and the energy of adsorption obtained from the D-R model (< 8kJ/mol) suggested that physisorption dominates the adsorption of methylene blue onto the prepared activated carbon. Adsorption kinetic data was best described using Pseudo second order kinetic model (R2 = 0.996), giving equilibrium rate constant (k2) of 7690g mg-1 min-1. The characteristic results showed that bambaranut shell can be employed as an alternative to commercial adsorbents in the removal of methylene blue dye from aqueous solutions and waste water.


2016 ◽  
Vol 74 (6) ◽  
pp. 1335-1345 ◽  
Author(s):  
Fengfeng Ma ◽  
Baowei Zhao ◽  
Jingru Diao

The purpose of this work is to investigate adsorption characteristic of corn stalk (CS) biochar for removal of cadmium ions (Cd2+) from aqueous solution. Batch adsorption experiments were carried out to evaluate the effects of pH value of solution, adsorbent particle size, adsorbent dosage, and ionic strength of solution on the adsorption of Cd2+ onto biochar that was pyrolytically produced from CS at 300 °C. The results showed that the initial pH value of solution played an important role in adsorption. The adsorptive amount of Cd2+ onto the biochar decreased with increasing the adsorbent dosage, adsorbent particle size, and ionic strength, while it increased with increasing the initial pH value of solution and temperature. Cd2+ was removed efficiently and quickly from aqueous solutions by the biochar with a maximum capacity of 33.94 mg/g. The adsorption process was well described by the pseudo-second-order kinetic model with the correlation coefficients greater than 0.986. The adsorption isotherm could be well fitted by the Langmuir model. The thermodynamic studies showed that the adsorption of Cd2+ onto the biochar was a spontaneous and exothermic process. The results indicate that CS biochar can be considered as an efficient adsorbent.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2360
Author(s):  
Seyedehmaryam Moosavi ◽  
Rita Yi Man Li ◽  
Chin Wei Lai ◽  
Yusliza Yusof ◽  
Sinyee Gan ◽  
...  

In this study, activated carbon (AC) from coconut shell, as a widely available agricultural waste, was synthesised in a simple one-step procedure and used to produce a magnetic Fe3O4/AC/TiO2 nano-catalyst for the degradation of methylene blue (MB) dye under UV light. Scanning electron microscopy revealed that TiO2 nanoparticles, with an average particle size of 45 to 62 nm, covered the surface of the AC porous structure without a reunion of its structure, which according to the TGA results enhanced the stability of the photocatalyst at high temperatures. The photocatalytic activities of synthesised AC, commercial TiO2, Fe3O4/AC, and Fe3O4/AC/TiO2 were compared, with Fe3O4/AC/TiO2 (1:2) exhibiting the highest catalytic activity (98%). Furthermore, evaluation of the recovery and reusability of the photocatalysts after treatment revealed that seven treatment cycles were possible without a significant reduction in the removal efficiency.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1403
Author(s):  
Kashma Sharma ◽  
Shreya Sharma ◽  
Vipasha Sharma ◽  
Pawan Kumar Mishra ◽  
Adam Ekielski ◽  
...  

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.


2019 ◽  
Vol 20 (1) ◽  
pp. 130 ◽  
Author(s):  
Ani Iryani ◽  
Hadi Nur ◽  
Mardi Santoso ◽  
Djoko Hartanto

Rhodamine B (RB) and Methylene Blue (MB) dyes adsorption using adsorbent ZSM-5 synthesized from Bangka kaolin were investigated in this study. The effects of the initial concentration, contact time and temperature on the adsorption process were also analyzed. The effect of the initial concentration and contact time played an important role in the adsorption process; however, the effect differs significantly in both dyes. The temperature plays little role in the dye adsorption process. The results showed the adsorption process occurred in ZSM-5 adhere to Langmuir isothermal adsorption model showing that the adsorption process occurred to be monolayer. Based on the kinetics studies, the pseudo-first-order kinetic model represents the adsorption kinetics that occurs for both dyes onto the synthesized ZSM-5. Thermodynamic parameters namely Gibbs free energy (ΔG°), standard entropy changes (ΔS°) and standard enthalpy (ΔH°) reveal that the adsorption process onto ZSM-5 for both dyes was spontaneous and exothermic.


2021 ◽  
Author(s):  
BENSEDIRA Abderrahim ◽  
HADDAOUI Nacerddine ◽  
DOUFNOUNE Rachida ◽  
MEZIANE Ouahiba ◽  
N. S. Labidi

Abstract Conducting Polymeric composites have attracted great attention over the last years because of their potential uses in chemical, electronic and optical devices, and as catalysts as well as in adsorption processes. Chemical synthesis of polyaniline (PANI) and polyaniline-SiO2 composite and their adsorptive performance were reported in the present work. These materials were prepared and evaluated for their methylene blue (MB) dye adsorption characteristics from aqueous solution. Adsorption equilibrium kinetic and thermodynamic experiments of MB onto PANI and PANI/SiO2 were studied. The effects of initial dye concentration, contact time and temperature on the adsorption capacity of PANI/SiO2 for MB have been investigated. The pseudo-first order and pseudo-second order kinetic models were used to describe the kinetic data. It was found that adsorption kinetics followed the pseudo-second order at all of the studied temperatures. The Langmuir, Freundlich and Dubinin Raduschkevich adsorption models were used for the mathematical description and the fit obtained using the Dubinin Raduschkevich isotherm has a medium R2 value.


2018 ◽  
Vol 36 (5-6) ◽  
pp. 1260-1273 ◽  
Author(s):  
Cai-Li Yu ◽  
Feng Bian ◽  
Shu-Fen Zhang ◽  
Xu Xu ◽  
Peng Ren ◽  
...  

Carboxyl-functionalized polymer microspheres with a rosin moiety were prepared through dispersion polymerization using styrene, disproportionated rosin ester, and methylacrylic acid as raw materials. The effects of dispersion medium (ethanol/water) ratio, monomer mass proportion and initiator concentration on the polymer microspheres were studied. Scanning electron microscopy, laser particle size analysis, thermogravimetric analysis and Fourier transform infrared spectroscopy were used to characterize the microspheres, and their carboxyl contents were determined by the conductance titration method. The adsorption of methylene blue of the microspheres was also investigated. The results showed that rosin-based carboxyl-functionalized polymer microspheres were successfully synthesized. The microspheres exhibited smooth, spherical shapes with good monodispersity and high thermal stability. The carboxyl content of the microspheres prepared under optimum conditions was 0.089 mmol·g−1, with the average particle size approximately 950 nm. With increasing carboxyl contents of the polymer microspheres, their methylene blue adsorption capacities increased. The maximum methylene blue adsorption capacity of the microspheres was 59.55 mg·g−1 in the highest carboxyl content.


2014 ◽  
Vol 34 (2) ◽  
pp. 153-169 ◽  
Author(s):  
S Arabzadeh ◽  
M Ghaedi ◽  
A Ansari ◽  
F Taghizadeh ◽  
M Rajabi

Palladium nanoparticles (Pd-NPs) and nickel oxide nanoparticles (NiO-NPs) were synthesized and loaded on activated carbon (AC). This novel material successfully used for the removal of methylene blue (MB) dye from aqueous medium. Full characterization of both material using X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Brunauer–Emmet–Teller analyses for Pd-NP show their high surface area (>1340 m2/g) and low pore size (<20 Å) and average particle size lower than 45 Å and for NiO-NP show their high surface area (>1316.1554 m2/g) and low pore size (<20 Å) and average particle size lower than 46 Å in addition to high reactive atom and presence of various functional groups. These unique properties make them possible for efficient removal of MB. In batch experimental set-up, optimum conditions for maximum removal of MB by both adsorbents were attained following searching effect of variables such as central composite design. The Langmuir isotherm was found to be highly recommended for fitting the experimental equilibrium data. The kinetic of adsorption of MB on both adsorbents strongly can be fitted by a combination of pseudo-second order and intraparticle diffusion pathway. The experimental result achieved in this article shows the superiority of Pd-NP-AC for MB removal than NiO-NP-AC, so the maximum adsorption capacities of Pd-NP-AC and NiO-NP-AC were 555.5 mg/g and 588.2 mg/g, respectively.


Sign in / Sign up

Export Citation Format

Share Document