scholarly journals Simultaneous Improvement of Yield Strength and Ductility at Cryogenic Temperature by Gradient Structure in 304 Stainless Steel

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1856
Author(s):  
Shuang Qin ◽  
Muxin Yang ◽  
Fuping Yuan ◽  
Xiaolei Wu

The tensile properties and the corresponding deformation mechanism of the graded 304 stainless steel (ss) at both room and cryogenic temperatures were investigated and compared with those of the coarse-grained (CGed) 304 ss. Gradient structures were found to have excellent synergy of strength and ductility at room temperature, and both the yield strength and the uniform elongation were found to be simultaneously improved at cryogenic temperature in the gradient structures, as compared to those for the CG sample. The hetero-deformation-induced (HDI) hardening was found to play a more important role in the gradient structures as compared to the CG sample and be more obvious at cryogenic temperature as compared to that at room temperature. The central layer in the gradient structures provides stronger strain hardening during tensile deformation at both temperatures, due to more volume fraction of martensitic transformation. The volume fraction of martensitic transformation in the gradient structures was found to be much higher at cryogenic temperature, resulting in a much stronger strain hardening at cryogenic temperature. The amount of martensitic transformation at the central layer of the gradient structures is observed to be even higher than that for the CG sample at cryogenic temperature, which is one of the origins for the simultaneous improvement of strength and ductility by the gradient structures at cryogenic temperature.

2015 ◽  
Vol 830-831 ◽  
pp. 15-18
Author(s):  
V. Anil Kumar ◽  
M.K. Karthikeyan ◽  
Rohit Kumar Gupta ◽  
M. Amruth ◽  
P. Ram Kumar ◽  
...  

15Cr-5Ni-1W precipitation hardening (PH) stainless steel is a martensitic PH stainless steel finding extensive use in semi-cryo engine applications. The alloy was developed through Vacuum Induction Melting (VIM) + Electro slag refining (ESR) under argon cover route. The alloy contains heavy elements like Mo, Nb, V and W totalling ~ 2 % by weight. Since the alloy is martensitic, stringent gas levels were also specified. Hence it was a challenging task to realise it without any segregation and stringent gas levels. The alloy was successfully melted through two different melt routes – (C). Electric Arc melting followed by Vacuum Oxygen decarburization (VOD) - vacuum degassing (VD) followed by secondary melting by ESR and also by melt route (V) vacuum induction melting (VIM) + ESR route. It was then forged into bars, rods and rings. The samples from the alloy were subjected to two different heat treatment cycles. Both the heat treatment cycles involved hardening at 1000°C for 2 hrs followed by air cooling to room temperature. In one of the cycle, sub-zero heat treatment at-70 °C was done prior to tempering while in the other cycle; direct tempering was carried out after hardening operation. Tempering was carried out at 2 different temperatures of 490 and 500 °C to achieve the specified mechanical properties. It was found that the alloy could meet the specified strength and ductility with both the heat treatment cycles mentioned above. However samples subjected to subzero heat treatment showed marginally higher strength with slight compromise in ductility. The alloy also exhibited similar impact toughness in both the heat treatment conditions. Delta ferrite was also found to be within 2% for both the heat treatment cycles employed in this study. The alloy also exhibited excellent strength and ductility at elevated temperature of 500 °C with just 25% reduction in yield strength compared to room temperature yield strength without much change in ductility.


2014 ◽  
Vol 510 ◽  
pp. 114-117 ◽  
Author(s):  
Hiroshi Hamasaki ◽  
Eiichiro Ishimaru ◽  
Fusahito Yoshida

Stress-strain responses of type SUS304 stainless steel at large strain under uniaxial tension and cyclic loading were investigated with special reference to plastic strain induced martensitic transformation. From the experiment it was found that the martensitic transformation plays an important role for the workhardening of the material at large strain, and a new finding from the cyclic experiment is that the stagnation of martensitic transformation appears at an early stage of reverse deformation. The evolutions of martensite volume fraction during monotonic and cyclic deformations were calculated by Stringfellow model, and it was found that the model is accurate enough for predicting the martensite volume fraction vs. plastic strain curve under monotonic loading case. On the other hand, it significantly overestimates the evolution of martensite volume fraction in a cyclic deformation.


Author(s):  
Yoichi Takeda ◽  
Zhanpeng Lu ◽  
Takeshi Adachi ◽  
Qunjia Peng ◽  
Jiro Kuniya ◽  
...  

It is known that stress corrosion cracking (SCC) found in the operational power plants show complex cracking behaviors and it’s resulted in complex crack shape e.g. crack branching and its uneven crack front. For the cracking near the weldment, this is due to crack penetrated along the complex distribution of residual stress and strain hardened area. In this investigation, in order to advance the accuracy for crack growth prediction with considering such complex fields, theoretical formulation for SCC growth was further modified. Hardness of the materials, which is a measureable parameter even in operational power plant, was focused on to reflect strain hardening of the component like heat affected zone of the weldments. The theoretical formulation for SCC growth has terms with yield strength of the material and strain hardening exponent to describe crack tip strain rate. Strain hardening was simulated by cross rolling with the range of 4 – 32% as thickness reduction. Correlation between yield strength, strain hardening exponent at 288°C and Vickers hardness was obtained by means of tensile tests and hardness tests on 316L stainless steel. It was observed that a monotonic increase in Vickers hardness and yield strength with degree of reduction in thickness worked by cross rolling. Relationship between Vickers hardness and yield strength was found to have linear correlation. Further confirmation was made by plotting the reported mechanical properties data in terms of Vickers hardness. In addition, linear relationship was found between yield strength and strain hardening exponent. These relationships were introduced into SCC theoretical formulation and a SCC growth rate prediction curve in terms of Vickers hardness was proposed. SCC crack growth evaluation tests with selected work hardened 316L stainless steel were performed in oxygenated pure water environment at 288°C to confirm the predictability of the formulation. The prediction curve had a good agreement with available literature data as well as obtained crack growth rates in the hardness range of 140–300HV which was likely expected one in weld HAZ.


1981 ◽  
Vol 12 ◽  
Author(s):  
A. Kolb-Telieps ◽  
B.L. Mordike ◽  
M. Mrowiec

ABSTRACTCu-Nb composite wires were produced from powder, electrolytically coated with tin and annealed to convert the Nb fibres to Nb 3Sn. The content was varied between 10 wt % and 40 wt %. The superconducting properties of the wires were determined. The mechanical properties, tensile strength, yield strength and ductility were measured as a function of volume fraction and deformation over a wide temperature range. The results are compared with those for wires produced by different techniques.


1982 ◽  
Vol 104 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Y. Ohashi ◽  
N. Ohno ◽  
M. Kawai

Four kinds of creep constitutive models, i.e., strain-hardening, modified strain-hardening, kinematic-hardening, and mixed-hardening theory, are evaluated on the basis of creep-test results on type 304 stainless steel at 650°C under repeated multiaxial loading. The predictions of the four models are compared with the experimental results. It is shown that substantial differences appear among these predictions under large rotations of the principal axes of the deviatoric stress tensor, and that none of them can describe with sufficient accuracy the transient increase of strain-rate and the noncollinearity between the deviatoric stress and creep strain-rate vectors which are observed just after the stress-rotations.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1246
Author(s):  
Bo Mao ◽  
Shuangjie Chu ◽  
Shuyang Wang

Friction and wear performance of austenite stainless steels have been extensively studied and show a close relationship with the friction-induced martensitic transformation. However, how the grain size and associated friction-induced martensitic transformation behavior affect the tribological properties of austenite steels have not been systematically studied. In this work, dry sliding tests were performed on an AISI 304 stainless steel with a grain size ranging from 25 to 92 μm. The friction-induced surface morphology and microstructure evolution were characterized. Friction-induced martensitic transformation behavior, including martensite nucleation, martensite growth and martensite variant selection and its effect on the friction and wear behavior of the 304 stainless steel were analyzed. The results showed that both the surface coefficient of friction (COF) and the wear rate increase with the grain size. The COF was reduced three times and wear rate was reduced by 30% as the grain size decreased from 92 to 25 μm. A possible mechanism is proposed to account for the effect of grain size on the tribological behavior. It is discussed that austenite steel with refined grain size tends to suppress the amount of friction-induced martensitic transformed and significantly alleviates both the plowing and adhesive effect during dry sliding.


Sign in / Sign up

Export Citation Format

Share Document