scholarly journals Adsorption of Recombinant Human β-Defensin 2 and Two Mutants on Mesoporous Silica Nanoparticles and Its Effect against Clavibacter michiganensis subsp. michiganensis

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2144
Author(s):  
Gabriel Marcelino-Pérez ◽  
Roberto Ruiz-Medrano ◽  
Salvador Gallardo-Hernández ◽  
Beatriz Xoconostle-Cázares

Solanum lycopersicum L. is affected among other pests and diseases, by the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm), causing important economic losses worldwide. Antimicrobial peptides (AMPs) are amphipathic cationic oligopeptides with which the development of pathogenic microorganisms has been inhibited. Therefore, in this study, we evaluate antimicrobial activity of mesoporous silica nanoparticles (MSN5.4) loaded with human β-defensin-2 (hβD2) and two mutants (TRX-hβD2-M and hβD2-M) against Cmm. hβD2, TRX-hβD2-M and hβD2-M presented a half-maximum inhibitory concentration (IC50) of 3.64, 1.56 and 6.17 μg/mL, respectively. MSNs had average particle sizes of 140 nm (SEM) and a tunable pore diameter of 4.8 up to 5.4 nm (BJH). AMPs were adsorbed more than 99% into MSN and a first release after 24 h was observed. The MSN loaded with the AMPs inhibited the growth of Cmm in solid and liquid media. It was also determined that MSNs protect AMPs from enzymatic degradation when the MSN/AMPs complexes were exposed to a pepsin treatment. An improved AMP performance was registered when it was adsorbed in the mesoporous matrix. The present study could expand the applications of MSNs loaded with AMPs as a biological control and provide new tools for the management of phytopathogenic microorganisms.

Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 39 ◽  
Author(s):  
Subramaniam ◽  
Thomas ◽  
Gustafsson ◽  
Jambhrunkar ◽  
Kidd ◽  
...  

Infectious diseases remain a major burden in today’s world, causing high mortality rates and significant economic losses, with >9 million deaths per year predicted by 2030. Invasion of host cells by intracellular bacteria poses treatment challenges due to the poor permeation of antimicrobials into the infected cells. To overcome these limitations, mesoporous silica nanoparticles (MSNP) loaded with the antibiotic rifampicin were investigated as a nanocarrier system for the treatment of intracellular bacterial infection with specific interest in the influence of particle size on treatment efficiency. An intracellular infection model was established using small colony variants (SCV) of S. aureus in macrophages to systemically evaluate the efficacy of rifampicin-loaded MSNP against the pathogen as compared to a rifampicin solution. As hypothesized, the superior uptake of MSNP by macrophages resulted in an enhanced treatment efficacy of the encapsulated rifampicin as compared to free antibiotic. This study provides a potential platform to improve the performance of currently available antibiotics against intracellular infections.


2019 ◽  
Vol 20 (7) ◽  
pp. 1560 ◽  
Author(s):  
Chia-Hui Chu ◽  
Shih-Hsun Cheng ◽  
Nai-Tzu Chen ◽  
Wei-Neng Liao ◽  
Leu-Wei Lo

Nanoparticle-based imaging contrast agents have drawn tremendous attention especially in multi-modality imaging. In this study, we developed mesoporous silica nanoparticles (MSNs) for use as dual-modality contrast agents for computed tomography (CT) and near-infrared (NIR) optical imaging (OI). A microwave synthesis for preparing naked platinum nanoparticles (nPtNPs) on MSNs (MSNs-Pt) was developed and characterized with physicochemical analysis and imaging systems. The high density of nPtNPs on the surface of the MSNs could greatly enhance the CT contrast. Inductively coupled plasma mass spectrometry (ICP-MS) revealed the MSNs-Pt compositions to be ~14% Pt by weight and TEM revealed an average particle diameter of ~50 nm and covered with ~3 nm diameter nPtNPs. To enhance the OI contrast, the NIR fluorescent dye Dy800 was conjugated to the MSNs-Pt nanochannels. The fluorescence spectra of MSNs-Pt-Dy800 were very similar to unconjugated Dy800. The CT imaging demonstrated that even modest degrees of Pt labeling could result in substantial X-ray attenuation. In vivo imaging of breast tumor-bearing mice treated with PEGylated MSNs-Pt-Dy800 (PEG-MSNs-Pt-Dy800) showed significantly improved contrasts in both fluorescence and CT imaging and the signal intensity within the tumor retained for 24 h post-injection.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1998 ◽  
Author(s):  
Jason Lin ◽  
Chuanqi Peng ◽  
Sanjana Ravi ◽  
A. K. M. Nur Alam Siddiki ◽  
Jie Zheng ◽  
...  

Biphenyl wrinkled mesoporous silica nanoparticles with controlled particle size and high surface area were evaluated for the storage and delivery of doxorubicin. The average particle size and surface area were ~70 nm and ~1100 m2/g. The doxorubicin loading efficiency was 38.2 ± 1.5 (w/w)% and the release was pH dependent. The breast cancer cell line, MCF-7 (Michigan Cancer Foundation-7) was used for the in vitro drug release study. The cytotoxicity of doxorubicin-loaded nanoparticles was significantly higher than free doxorubicin. Fluorescence images showed biphenyl wrinkled mesoporous silica (BPWS) uptake by the MCF-7 cells. The biphenyl bridged wrinkled silica nanoparticles appear promising for hydrophobic drug loading and delivery.


2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


Author(s):  
Kumar Nishchaya ◽  
Swatantra K.S. Kushwaha ◽  
Awani Kumar Rai

Background: Present malignant cancer medicines has the advancement of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer medication in malignant growth tissue. Aim: In the present investigation, a silica nanoparticles (MSNs) stacked with hydroxyurea were combined and was optimized for dependent and independent variables. Method: In this study, microporous silica nanoparticle stacked with neoplastic medication had been prepared through emulsification followed with solvent evaporation method. Prepared MSNs were optimized for dependent and independent variables. Different formulations were prepared with varying ratio of polymer, lipid and surfactant which affects drug release and kinetics of drug release pattern. The obtained MSNs were identified by FTIR, SEM, drug entrapment, in-vitro drug release, drug release kinetics study, stability testing in order to investigate the nanoparticle characteristics. Results: The percentage drug entrapment of the drug for the formulations F1, F2, F3, was found to be 27.78%, 65.52% and 48.26%. The average particle size for F2 formulation was found to be 520 nm through SEM. The cumulative drug release for the formulations F1, F2, F3 was found to be 64.17%, 71.82% and 32.68%. The formulations were found to be stable which gives controlled drug delivery for 6 hours. Conclusion: From the stability studies data it can be culminated that formulations are most stable when stored at lower temperature or in refrigerator i.e. 5˚C ± 3˚C. It can be concluded that MSN’s loaded with hydroxyurea is a promising approach towards the management of cancer due to its sustained release and less side effects.


2021 ◽  
Vol 119 ◽  
pp. 111619
Author(s):  
Paul Jänicke ◽  
Claudia Lennicke ◽  
Annette Meister ◽  
Barbara Seliger ◽  
Ludger A. Wessjohann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document