scholarly journals Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2167
Author(s):  
Maxim B. Gongalsky ◽  
Nikolay V. Pervushin ◽  
Daria E. Maksutova ◽  
Uliana A. Tsurikova ◽  
Pavel P. Putintsev ◽  
...  

Silicon nanoparticles (SiNP) are currently of great interest, especially in biomedicine, because of their unique physicochemical properties combined with biodegradability. SiNPs can be obtained in various ways and can have either a non-porous solid (sol-) or porous (por-) structure. In this work, we carry out detailed optical monitoring of sol- and por-SiNP biodegradation using Raman and photoluminescence (PL) micro-spectroscopy. SiNPs were obtained by ultrasound grinding of sol- or por-silicon nanowires, created by silver-assisted chemical etching of crystalline Si with different doping levels. In this case, sol-SiNPs consist of nanocrystals 30 nm in size, while por-SiNPs consist of small 3 nm nanocrystals and 16 nm pores. Both SiNPs show low in vitro cytotoxicity towards MCF-7 and HEK293T cells up to 800 μg/mL. The appearance of the F-band (blue–yellow) PL, as well as a decrease in the intensity of the Raman signal, indicate the gradual dissolution of the sol-SiNPs during 20 days of incubation. At the same time, the rapid dissolution of por-SiNP within 24 h is identified by the quenching of their S-band (red) PL and the disappearance of the Raman signal. The obtained results are important for development of intelligent biodegradable drug delivery systems based on SiNPs.

2018 ◽  
Vol 19 (10) ◽  
pp. 3179 ◽  
Author(s):  
Hongling Gu ◽  
Na Li ◽  
Jiangkun Dai ◽  
Yaxi Xi ◽  
Shijun Wang ◽  
...  

A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 161 ◽  
Author(s):  
Eliana B. Souto ◽  
Selma B. Souto ◽  
Aleksandra Zielinska ◽  
Alessandra Durazzo ◽  
Massimo Lucarini ◽  
...  

We have developed a new cationic solid lipid nanoparticle (SLN) formulation, composed of Compritol ATO 888, poloxamer 188 and cetyltrimethylammonium bromide (CTAB), to load perillaldehyde 1,2-epoxide, and surface-tailored with a monoclonal antibody for site-specific targeting of human epithelial growth receptor 2 (HER2). Perillaldehyde 1,2-epoxide-loaded cationic SLN (cPa-SLN), with a mean particle size (z-Ave) of 275.31 ± 4.78 nm and polydispersity index (PI) of 0.303 ± 0.081, were produced by high shear homogenization. An encapsulation efficiency of cPa-SLN above 80% was achieved. The release of perillaldehyde 1,2-epoxide from cationic SLN followed the Korsemeyer–Peppas kinetic model, which is typically seen in nanoparticle formulations. The lipid peroxidation of cPa-SLN was assessed by the capacity to produce thiobarbituric acid-reactive substances, while the antioxidant activity was determined by the capacity to scavenge the stable radical DPPH. The surface functionalization of cPa-SLN with the antibody was done via streptavidin-biotin interaction, monitoring z-Ave, PI and ZP of the obtained assembly (cPa-SLN-SAb), as well as its stability in phosphate buffer. The effect of plain cationic SLN (c-SLN, monoterpene free), cPa-SLN and cPa-SLN-SAb onto the MCF-7 cell lines was evaluated in a concentration range from 0.01 to 0.1 mg/mL, confirming that streptavidin adsorption onto cPa-SLN-SAb improved the cell viability in comparison to the cationic cPa-SLN.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1462
Author(s):  
Ahmed Al-Kattan ◽  
Lamiaa M. A. Ali ◽  
Morgane Daurat ◽  
Elodie Mattana ◽  
Magali Gary-Bobo

Driven by their distinctive physiological activities, biological properties and unique theranostic modalities, silicon nanoparticles (SiNPs) are one of the promising materials for the development of novel multifunctional nanoplatforms for biomedical applications. In this work, we assessed the possibility to use laser-synthesized Si NPs as photosensitizers in two-photon excited photodynamic therapy (TPE-PDT) modality. Herein, we used an easy strategy to synthesize ultraclean and monodispersed SiNPs using laser ablation and fragmentation sequences of silicon wafer in aqueous solution, which prevent any specific purification step. Structural analysis revealed the spherical shape of the nanoparticles with a narrow size distribution centered at the mean size diameter of 62 nm ± 0.42 nm, while the negative surface charge of −40 ± 0.3 mV ensured a great stability without sedimentation over a long period of time. In vitro studies on human cancer cell lines (breast and liver) and healthy cells revealed their low cytotoxicity without any light stimulus and their therapeutic potential under TPE-PDT mode at 900 nm with a promising cell death of 45% in case of MCF-7 breast cancer cells, as a consequence of intracellular reactive oxygen species release. Their luminescence emission inside the cells was clearly observed at UV-Vis region. Compared to Si nanoparticles synthesized via chemical routes, which are often linked to additional modules with photochemical and photobiological properties to boost photodynamic effect, laser-synthesized SiNPs exhibit promising intrinsic therapeutic and imaging properties to develop advanced strategy in nanomedicine field.


Small ◽  
2016 ◽  
Vol 13 (3) ◽  
pp. 1602739 ◽  
Author(s):  
Nancy Wareing ◽  
Kyle Szymanski ◽  
Giridhar R. Akkaraju ◽  
Armando Loni ◽  
Leigh T. Canham ◽  
...  

2017 ◽  
Vol 41 (7) ◽  
pp. 2543-2560 ◽  
Author(s):  
G. Kalaiarasi ◽  
Ruchi Jain ◽  
H. Puschman ◽  
S. Poorna Chandrika ◽  
K. Preethi ◽  
...  

Four new binuclear nickel(ii) metallates showed promising antiproliferative activity against MCF-7 and HeLa cell lines and were much less toxic against HaCaT.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Putri Nur Hidayah Al-Zikri ◽  
Muhammad Taher ◽  
Deny Susanti ◽  
Solachuddin Jauhari Arief Ichwan

Luvunga scandens belongs to the family of Rutaceae which usually inhabit tropical and moist environment. This plant is known as ‘Mengkurat Jakun’ among locals and used traditionally to treat fever and fatigue via decoction. The aim of this study was to investigate the cytotoxic activity of the leaves and stems extracts of L. scandens extract. Extracts of the leaves and stems were obtained from sequential extraction procedures by various organic solvents. All extracts were subjected to cytotoxic study by 3-(4, 5-dimethylthaizol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. In in vitro cytotoxicity assay, all L. scandens extracts exhibited cytotoxicity against human breast adenocarcinoma (MCF-7) and human lung adenocarcinoma (A549) cell lines. The IC50 values of dichloromethane and methanol extracts from the leaves of L. scandens against MCF-7 cell line were 62.5 µg/mL and 88.0 µg/mL, respectively, whereas IC50 of methanol extract from stem was 81.0 µg/mL. All extracts were less active against A549 cell line where IC50 value were not be determined. The present findings revealed the potential of L. scandens as a cytotoxic agent against MCF-7 cell line. However, further studies should be planned to evaluate role of the plant in cytotoxic activity.


2016 ◽  
Vol 16 (1) ◽  
pp. 160-170 ◽  
Author(s):  
Ezequiel Bernabeu ◽  
Lorena Gonzalez ◽  
Maria J. Legaspi ◽  
Marcela A. Moretton ◽  
Diego A. Chiappetta

2021 ◽  
Vol 11 (19) ◽  
pp. 9066
Author(s):  
Ahmed A. H. Abdellatif ◽  
Mashari A. Aldhafeeri ◽  
Waleed H. Alharbi ◽  
Fahad H. Alharbi ◽  
Waleed Almutiri ◽  
...  

The aim of this study was to improve the solubility of etoposide–ethylcellulose (ET–ETO) microparticles using the freeze-drying technique. Ethylcellulose (EC) microparticles loaded with etoposide (ETO) were prepared with different drug–polymer molar ratios of 1:1, 1:3, 1:6, and 1:20 by the solvent evaporation method. The size of the prepared microparticles was 0.088 µm. The results showed that the amount of ETO encapsulated into the microparticles was 387.3, 365.0, 350.0, and 250 µg/50 mg microparticles for microparticles with drug–polymer ratios of 1:1, 1:3, 1:6, and 1:20, respectively. The FT-IR spectra showed no chemical interaction between ETO and the polymer in the solid state. The results obtained from the dissolution experiment showed that the freeze-dried microparticles were stable in 0.1 N HCl (gastric pH) for 2 h. At pH 7.4, the ETO release was 60 to 70% within the first 15 min and approximately 100% within 30 min. Results from the application of different dissolution models showed that the equations that best fit the dissolution data for the ET–ETO microparticles at pH 7.4 were the Higuchi and Peppas model equations. The in vitro cytotoxicity assay of free ETO and freeze-dried microspheres prepared in this study with a drug–polymer ratio of 1:1 was performed in two mammalian cancer cell lines, MCF-7 (for bone cancer of the mammary organ) and Caco-2 (for mammalian epithelial colorectal adenocarcinoma). The results showed that the half-maximal inhibitory concentrations (IC50 values) for ETO and freeze-dried ET–ETO microparticles were 18.6 µM and 27.1 µM, respectively. In conclusion, freeze-dried ET–ETO is a promising formulation for developing a fast-dissolving form of ETO with a significant antiproliferative activity against the tested cell lines used in this study. It is a promising formulation for local duodenal area targeting.


2020 ◽  
Vol 9 (5) ◽  
pp. 367-370
Author(s):  
BN Satish ◽  
◽  
Mallya Suma V ◽  
Vishwanatha ◽  
◽  
...  

About: Habenaria longicorniculata J. Graham are tuberous orchid, the tubers utilized by flok healers in cancer managemnet, as a rejuvenator. A study has been planned to evaluate In-vitro cytotoxicity of tuber extract against selected cell lines. Materials and Methods: H. longicorniculata J.Graham identified, uprooted during their flowering time. Tuber extract of this plant used for its In-vitro cytotoxicity against selected cell lines of Human Breast cancer (MCF 7), Human Liver carcinoma (HepG2), and Human cervix adenocarcinoma (HeLa) cells as per standard protocol. Results: Tuber Extract exhibited a CTC50 value of >1000 on MCF 7, HepG2 and HeLa cell lines. The results from the MTT assay indicate that 72hr extract incubation with the combined extracts is toxic to the cells and the level of damage is concentration dependent.


Sign in / Sign up

Export Citation Format

Share Document