scholarly journals Limitations of Thermal Stability Analysis via In-Situ TEM/Heating Experiments

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2541
Author(s):  
Osman El-Atwani ◽  
Hyosim Kim ◽  
Cayla Harvey ◽  
Mert Efe ◽  
Stuart A. Maloy

This work highlights some limitations of thermal stability analysis via in-situ transmission electron microscopy (TEM)-annealing experiments on ultrafine and nanocrystalline materials. We provide two examples, one on nanocrystalline pure copper and one on nanocrystalline HT-9 steel, where in-situ TEM-annealing experiments are compared to bulk material annealing experiments. The in-situ TEM and bulk annealing experiments demonstrated different results on pure copper but similar output in the HT-9 steel. The work entails discussion of the results based on literature theoretical concepts, and expound on the inevitability of comparing in-situ TEM annealing experimental results to bulk annealing when used for material thermal stability assessment.

2013 ◽  
Vol 19 (S5) ◽  
pp. 114-118 ◽  
Author(s):  
Jae-Wook Lee ◽  
Hyung-Kyu Kim ◽  
Jee-Hwan Bae ◽  
Min-Ho Park ◽  
Hyoungsub Kim ◽  
...  

AbstractThe formation and morphological evolution of germanides formed in a ternary Ni/Ta-interlayer/Ge system were examined by ex situ and in situ annealing experiments. The Ni germanide film formed in the Ni/Ta-interlayer/Ge system maintained continuity up to 550°C, whereas agglomeration of the Ni germanide occurred in the Ni/Ge system without Ta-interlayer. Through microstructural and chemical analysis of the Ni/Ta-interlayer/Ge system during and after in situ annealing in a transmission electron microscope, it was confirmed that the Ta atoms remained uniformly on the top of the newly formed Ni germanide layer during the diffusion reaction. Consequently, the agglomeration of the Ni germanide film was retarded and the thermal stability was improved by the Ta incorporation.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
M. Park ◽  
S.J. Krause ◽  
S.R. Wilson

Cu alloying in Al interconnection lines on semiconductor chips improves their resistance to electromigration and hillock growth. Excess Cu in Al can result in the formation of Cu-rich Al2Cu (θ) precipitates. These precipitates can significantly increase corrosion susceptibility due to the galvanic action between the θ-phase and the adjacent Cu-depleted matrix. The size and distribution of the θ-phase are also closely related to the film susceptibility to electromigration voiding. Thus, an important issue is the precipitation phenomena which occur during thermal device processing steps. In bulk alloys, it was found that the θ precipitates can grow via the grain boundary “collector plate mechanism” at rates far greater than allowed by volume diffusion. In a thin film, however, one might expect that the growth rate of a θ precipitate might be altered by interfacial diffusion. In this work, we report on the growth (lengthening) kinetics of the θ-phase in Al-Cu thin films as examined by in-situ isothermal aging in transmission electron microscopy (TEM).


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3727
Author(s):  
Huanhuan He ◽  
Zhiwei Lin ◽  
Shengming Jiang ◽  
Xiaotian Hu ◽  
Jian Zhang ◽  
...  

The FeCoNiCrTi0.2 high-entropy alloys fabricated by vacuum arc melting method, and the annealed pristine material, are face centered cubic structures with coherent γ’ precipitation. Samples were irradiated with 50 keV He+ ions to a fluence of 2 × 1016 ions/cm2 at 723 K, and an in situ annealing experiment was carried out to monitor the evolution of helium bubbles during heating to 823 and 923 K. The pristine structure of FeCoNiCrTi0.2 samples and the evolution of helium bubbles during in situ annealing were both characterized by transmission electron microscopy. The annealing temperature and annealing time affect the process of helium bubbles evolution and formation. Meanwhile, the grain boundaries act as sinks to accumulate helium bubbles. However, the precipitation phase seems have few effects on the helium bubble evolution, which may be due to the coherent interface and same structure of γ’ precipitation and matrix.


1998 ◽  
Vol 554 ◽  
Author(s):  
J. A. Horton ◽  
J. L. Wright ◽  
J. H. Schneibel

AbstractThe fracture behavior of a Zr-based bulk amorphous alloy, Zr-10 Al-5 Ti-17.9 Cu-14.6Ni (at.%), was examined by transmission electron microscopy (TEM) and x-ray diffraction forany evidence of crystallization preceding crack propagation. No evidence for crystallizationwas found in shear bands in compression specimens or at the fracture surface in tensile specimens.In- situ TEM deformation experiments were performed to more closely examine actualcrack tip regions. During the in-situ deformation experiment, controlled crack growth occurredto the point where the specimen was approximately 20 μm thick at which point uncontrolledcrack growth occurred. No evidence of any crystallization was found at the crack tips or thecrack flanks. Subsequent scanning microscope examination showed that the uncontrolledcrack growth region exhibited ridges and veins that appeared to have resulted from melting. Performing the deformations, both bulk and in-situ TEM, at liquid nitrogen temperatures (LN2) resulted in an increase in the amount of controlled crack growth. The surface roughness of the bulk regions fractured at LN2 temperatures corresponded with the roughness of the crack propagation observed during the in-situ TEM experiment, suggesting that the smooth-appearing room temperature fracture surfaces may also be a result of localized melting.


1993 ◽  
Vol 16 (5) ◽  
pp. 260-264 ◽  
Author(s):  
H.Y. Tong ◽  
B.Z. Ding ◽  
H.G. Jiang ◽  
Z.Q. Hu ◽  
L. Dong ◽  
...  

NANO ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. 1850119
Author(s):  
Xiaoyan Li ◽  
Yunlong Yu ◽  
Xiangfeng Guan ◽  
Peihui Luo ◽  
Linqin Jiang ◽  
...  

Eu[Formula: see text]/Tb[Formula: see text] co-doped nanocomposite containing CeO2 nanocrystals was successfully prepared by an in situ sol–gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of CeO2 nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of CeO2 content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.


2005 ◽  
Vol 907 ◽  
Author(s):  
J. A. Gregg ◽  
K Hattar ◽  
C H Lei ◽  
I M Robertson

AbstractRetention of the enhanced properties reported for nanograined metallic systems requires that the nanostructure be insensitive to temperature and deformation. In situ transmission electron microscopy annealing experiments were employed to investigate the structural changes associated with the formation of micron-sized grains in nanograined evaporated gold thin films. This abnormal grain growth occurs randomly throughout the film. Twinning but not dislocation slip occurs in the growing grains until the grain size is in the hundreds of nanometer range. The twins appear to hinder growth and for grain growth to continue the twins must either be annihilated or be able to grow with the grain concurrently.


Sign in / Sign up

Export Citation Format

Share Document